| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspan1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uhgrspan1.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | uhgrspan1.f |  |-  F = { i e. dom I | N e/ ( I ` i ) } | 
						
							| 4 |  | uhgrspan1.s |  |-  S = <. ( V \ { N } ) , ( I |` F ) >. | 
						
							| 5 |  | difssd |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( V \ { N } ) C_ V ) | 
						
							| 6 | 1 2 3 4 | uhgrspan1lem3 |  |-  ( iEdg ` S ) = ( I |` F ) | 
						
							| 7 |  | resresdm |  |-  ( ( iEdg ` S ) = ( I |` F ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) ) | 
						
							| 9 | 2 | uhgrfun |  |-  ( G e. UHGraph -> Fun I ) | 
						
							| 10 |  | fvelima |  |-  ( ( Fun I /\ c e. ( I " F ) ) -> E. j e. F ( I ` j ) = c ) | 
						
							| 11 | 10 | ex |  |-  ( Fun I -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) | 
						
							| 12 | 9 11 | syl |  |-  ( G e. UHGraph -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) | 
						
							| 14 |  | eqidd |  |-  ( i = j -> N = N ) | 
						
							| 15 |  | fveq2 |  |-  ( i = j -> ( I ` i ) = ( I ` j ) ) | 
						
							| 16 | 14 15 | neleq12d |  |-  ( i = j -> ( N e/ ( I ` i ) <-> N e/ ( I ` j ) ) ) | 
						
							| 17 | 16 3 | elrab2 |  |-  ( j e. F <-> ( j e. dom I /\ N e/ ( I ` j ) ) ) | 
						
							| 18 |  | fvexd |  |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. _V ) | 
						
							| 19 | 1 2 | uhgrss |  |-  ( ( G e. UHGraph /\ j e. dom I ) -> ( I ` j ) C_ V ) | 
						
							| 20 | 19 | ad2ant2r |  |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) C_ V ) | 
						
							| 21 |  | simprr |  |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> N e/ ( I ` j ) ) | 
						
							| 22 |  | elpwdifsn |  |-  ( ( ( I ` j ) e. _V /\ ( I ` j ) C_ V /\ N e/ ( I ` j ) ) -> ( I ` j ) e. ~P ( V \ { N } ) ) | 
						
							| 23 | 18 20 21 22 | syl3anc |  |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. ~P ( V \ { N } ) ) | 
						
							| 24 |  | eleq1 |  |-  ( c = ( I ` j ) -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) ) | 
						
							| 25 | 24 | eqcoms |  |-  ( ( I ` j ) = c -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) ) | 
						
							| 26 | 23 25 | syl5ibrcom |  |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) | 
						
							| 27 | 26 | ex |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( ( j e. dom I /\ N e/ ( I ` j ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) ) | 
						
							| 28 | 17 27 | biimtrid |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( j e. F -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) ) | 
						
							| 29 | 28 | rexlimdv |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( E. j e. F ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) | 
						
							| 30 | 13 29 | syld |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> c e. ~P ( V \ { N } ) ) ) | 
						
							| 31 | 30 | ssrdv |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( I " F ) C_ ~P ( V \ { N } ) ) | 
						
							| 32 |  | opex |  |-  <. ( V \ { N } ) , ( I |` F ) >. e. _V | 
						
							| 33 | 4 32 | eqeltri |  |-  S e. _V | 
						
							| 34 | 33 | a1i |  |-  ( N e. V -> S e. _V ) | 
						
							| 35 | 1 2 3 4 | uhgrspan1lem2 |  |-  ( Vtx ` S ) = ( V \ { N } ) | 
						
							| 36 | 35 | eqcomi |  |-  ( V \ { N } ) = ( Vtx ` S ) | 
						
							| 37 |  | eqid |  |-  ( iEdg ` S ) = ( iEdg ` S ) | 
						
							| 38 | 6 | rneqi |  |-  ran ( iEdg ` S ) = ran ( I |` F ) | 
						
							| 39 |  | edgval |  |-  ( Edg ` S ) = ran ( iEdg ` S ) | 
						
							| 40 |  | df-ima |  |-  ( I " F ) = ran ( I |` F ) | 
						
							| 41 | 38 39 40 | 3eqtr4ri |  |-  ( I " F ) = ( Edg ` S ) | 
						
							| 42 | 36 1 37 2 41 | issubgr |  |-  ( ( G e. UHGraph /\ S e. _V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) ) | 
						
							| 43 | 34 42 | sylan2 |  |-  ( ( G e. UHGraph /\ N e. V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) ) | 
						
							| 44 | 5 8 31 43 | mpbir3and |  |-  ( ( G e. UHGraph /\ N e. V ) -> S SubGraph G ) |