| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrspanop.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | uhgrspanop.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) ) )  →  𝑔  ∈  V ) | 
						
							| 5 |  | simprl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) ) )  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 6 |  | simprr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) ) )  →  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) ) )  →  𝐺  ∈  USGraph ) | 
						
							| 8 | 1 2 4 5 6 7 | usgrspan | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) ) )  →  𝑔  ∈  USGraph ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝐺  ∈  USGraph  →  ( ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) )  →  𝑔  ∈  USGraph ) ) | 
						
							| 10 | 9 | alrimiv | ⊢ ( 𝐺  ∈  USGraph  →  ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 )  =  𝑉  ∧  ( iEdg ‘ 𝑔 )  =  ( 𝐸  ↾  𝐴 ) )  →  𝑔  ∈  USGraph ) ) | 
						
							| 11 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐺  ∈  USGraph  →  𝑉  ∈  V ) | 
						
							| 13 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 14 | 13 | resex | ⊢ ( 𝐸  ↾  𝐴 )  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐸  ↾  𝐴 )  ∈  V ) | 
						
							| 16 | 10 12 15 | gropeld | ⊢ ( 𝐺  ∈  USGraph  →  〈 𝑉 ,  ( 𝐸  ↾  𝐴 ) 〉  ∈  USGraph ) |