Metamath Proof Explorer


Theorem unineq

Description: Infer equality from equalities of union and intersection. Exercise 20 of Enderton p. 32 and its converse. (Contributed by NM, 10-Aug-2004)

Ref Expression
Assertion unineq A C = B C A C = B C A = B

Proof

Step Hyp Ref Expression
1 eleq2 A C = B C x A C x B C
2 elin x A C x A x C
3 elin x B C x B x C
4 1 2 3 3bitr3g A C = B C x A x C x B x C
5 iba x C x A x A x C
6 iba x C x B x B x C
7 5 6 bibi12d x C x A x B x A x C x B x C
8 4 7 syl5ibr x C A C = B C x A x B
9 8 adantld x C A C = B C A C = B C x A x B
10 uncom A C = C A
11 uncom B C = C B
12 10 11 eqeq12i A C = B C C A = C B
13 eleq2 C A = C B x C A x C B
14 12 13 sylbi A C = B C x C A x C B
15 elun x C A x C x A
16 elun x C B x C x B
17 14 15 16 3bitr3g A C = B C x C x A x C x B
18 biorf ¬ x C x A x C x A
19 biorf ¬ x C x B x C x B
20 18 19 bibi12d ¬ x C x A x B x C x A x C x B
21 17 20 syl5ibr ¬ x C A C = B C x A x B
22 21 adantrd ¬ x C A C = B C A C = B C x A x B
23 9 22 pm2.61i A C = B C A C = B C x A x B
24 23 eqrdv A C = B C A C = B C A = B
25 uneq1 A = B A C = B C
26 ineq1 A = B A C = B C
27 25 26 jca A = B A C = B C A C = B C
28 24 27 impbii A C = B C A C = B C A = B