Metamath Proof Explorer
		
		
		
		Description:  The union of an ordered pair.  Theorem 65 of Suppes p. 39.
       (Contributed by NM, 17-Aug-2004)  (Revised by Mario Carneiro, 26-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | opthw.1 |  | 
					
						|  |  | opthw.2 |  | 
				
					|  | Assertion | uniop |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opthw.1 |  | 
						
							| 2 |  | opthw.2 |  | 
						
							| 3 | 1 2 | dfop |  | 
						
							| 4 | 3 | unieqi |  | 
						
							| 5 |  | snex |  | 
						
							| 6 |  | prex |  | 
						
							| 7 | 5 6 | unipr |  | 
						
							| 8 |  | snsspr1 |  | 
						
							| 9 |  | ssequn1 |  | 
						
							| 10 | 8 9 | mpbi |  | 
						
							| 11 | 4 7 10 | 3eqtri |  |