Metamath Proof Explorer


Theorem uniprgOLD

Description: Obsolete version of unipr as of 1-Sep-2024. (Contributed by NM, 25-Aug-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion uniprgOLD AVBWAB=AB

Proof

Step Hyp Ref Expression
1 preq1 x=Axy=Ay
2 1 unieqd x=Axy=Ay
3 uneq1 x=Axy=Ay
4 2 3 eqeq12d x=Axy=xyAy=Ay
5 preq2 y=BAy=AB
6 5 unieqd y=BAy=AB
7 uneq2 y=BAy=AB
8 6 7 eqeq12d y=BAy=AyAB=AB
9 vex xV
10 vex yV
11 9 10 unipr xy=xy
12 4 8 11 vtocl2g AVBWAB=AB