Metamath Proof Explorer


Theorem unisng

Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 13-Aug-2002)

Ref Expression
Assertion unisng AVA=A

Proof

Step Hyp Ref Expression
1 dfsn2 A=AA
2 1 unieqi A=AA
3 2 a1i AVA=AA
4 uniprg AVAVAA=AA
5 4 anidms AVAA=AA
6 unidm AA=A
7 6 a1i AVAA=A
8 3 5 7 3eqtrd AVA=A