Description: The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | ||
| unitgrp.2 | |||
| unitgrp.3 | |||
| Assertion | unitgrpid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | ||
| 2 | unitgrp.2 | ||
| 3 | unitgrp.3 | ||
| 4 | 1 3 | 1unit | |
| 5 | eqid | ||
| 6 | 5 1 | unitss | |
| 7 | 2 5 3 | ringidss | |
| 8 | 6 7 | mp3an2 | |
| 9 | 4 8 | mpdan |