Metamath Proof Explorer


Theorem unitssxrge0

Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Assertion unitssxrge0 010+∞

Proof

Step Hyp Ref Expression
1 0e0iccpnf 00+∞
2 1xr 1*
3 0le1 01
4 pnfge 1*1+∞
5 2 4 ax-mp 1+∞
6 0xr 0*
7 pnfxr +∞*
8 elicc1 0*+∞*10+∞1*011+∞
9 6 7 8 mp2an 10+∞1*011+∞
10 2 3 5 9 mpbir3an 10+∞
11 iccss2 00+∞10+∞010+∞
12 1 10 11 mp2an 010+∞