Metamath Proof Explorer


Theorem unss12

Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004)

Ref Expression
Assertion unss12 A B C D A C B D

Proof

Step Hyp Ref Expression
1 unss1 A B A C B C
2 unss2 C D B C B D
3 1 2 sylan9ss A B C D A C B D