Metamath Proof Explorer


Theorem upcic

Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025)

Ref Expression
Hypotheses upcic.b B = Base D
upcic.c C = Base E
upcic.h H = Hom D
upcic.j J = Hom E
upcic.o O = comp E
upcic.f φ F D Func E G
upcic.x φ X B
upcic.y φ Y B
upcic.z φ Z C
upcic.m φ M Z J F X
upcic.1 φ w B f Z J F w ∃! k X H w f = X G w k Z F X O F w M
upcic.n φ N Z J F Y
upcic.2 φ v B g Z J F v ∃! l Y H v g = Y G v l Z F Y O F v N
Assertion upcic φ X 𝑐 D Y

Proof

Step Hyp Ref Expression
1 upcic.b B = Base D
2 upcic.c C = Base E
3 upcic.h H = Hom D
4 upcic.j J = Hom E
5 upcic.o O = comp E
6 upcic.f φ F D Func E G
7 upcic.x φ X B
8 upcic.y φ Y B
9 upcic.z φ Z C
10 upcic.m φ M Z J F X
11 upcic.1 φ w B f Z J F w ∃! k X H w f = X G w k Z F X O F w M
12 upcic.n φ N Z J F Y
13 upcic.2 φ v B g Z J F v ∃! l Y H v g = Y G v l Z F Y O F v N
14 1 2 3 4 5 6 7 8 9 10 11 12 13 upciclem4 φ X 𝑐 D Y r X Iso D Y N = X G Y r Z F X O F Y M
15 14 simpld φ X 𝑐 D Y