Metamath Proof Explorer


Theorem upgr1wlkdlem1

Description: Lemma 1 for upgr1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses upgr1wlkd.p P=⟨“XY”⟩
upgr1wlkd.f F=⟨“J”⟩
upgr1wlkd.x φXVtxG
upgr1wlkd.y φYVtxG
upgr1wlkd.j φiEdgGJ=XY
Assertion upgr1wlkdlem1 φX=YiEdgGJ=X

Proof

Step Hyp Ref Expression
1 upgr1wlkd.p P=⟨“XY”⟩
2 upgr1wlkd.f F=⟨“J”⟩
3 upgr1wlkd.x φXVtxG
4 upgr1wlkd.y φYVtxG
5 upgr1wlkd.j φiEdgGJ=XY
6 preq2 Y=XXY=XX
7 6 eqeq2d Y=XiEdgGJ=XYiEdgGJ=XX
8 7 eqcoms X=YiEdgGJ=XYiEdgGJ=XX
9 simpl iEdgGJ=XXφiEdgGJ=XX
10 dfsn2 X=XX
11 9 10 eqtr4di iEdgGJ=XXφiEdgGJ=X
12 11 ex iEdgGJ=XXφiEdgGJ=X
13 8 12 syl6bi X=YiEdgGJ=XYφiEdgGJ=X
14 13 com13 φiEdgGJ=XYX=YiEdgGJ=X
15 5 14 mpd φX=YiEdgGJ=X
16 15 imp φX=YiEdgGJ=X