Metamath Proof Explorer


Theorem upgracycumgr

Description: An acyclic pseudograph is a multigraph. (Contributed by BTernaryTau, 15-Oct-2023)

Ref Expression
Assertion upgracycumgr G UPGraph G AcyclicGraph G UMGraph

Proof

Step Hyp Ref Expression
1 upgruhgr G UPGraph G UHGraph
2 1 anim1ci G UPGraph G AcyclicGraph G AcyclicGraph G UHGraph
3 eqid Vtx G = Vtx G
4 eqid iEdg G = iEdg G
5 3 4 acycgrislfgr G AcyclicGraph G UHGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x
6 2 5 syl G UPGraph G AcyclicGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x
7 3 4 umgrislfupgr G UMGraph G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x
8 7 biimpri G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | 2 x G UMGraph
9 6 8 syldan G UPGraph G AcyclicGraph G UMGraph