Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BTernaryTau
Graph theory
Acyclic graphs
upgracycumgr
Next ⟩
umgracycusgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
upgracycumgr
Description:
An acyclic pseudograph is a multigraph.
(Contributed by
BTernaryTau
, 15-Oct-2023)
Ref
Expression
Assertion
upgracycumgr
⊢
G
∈
UPGraph
∧
G
∈
AcyclicGraph
→
G
∈
UMGraph
Proof
Step
Hyp
Ref
Expression
1
upgruhgr
⊢
G
∈
UPGraph
→
G
∈
UHGraph
2
1
anim1ci
⊢
G
∈
UPGraph
∧
G
∈
AcyclicGraph
→
G
∈
AcyclicGraph
∧
G
∈
UHGraph
3
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
4
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
5
3
4
acycgrislfgr
⊢
G
∈
AcyclicGraph
∧
G
∈
UHGraph
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
|
2
≤
x
6
2
5
syl
⊢
G
∈
UPGraph
∧
G
∈
AcyclicGraph
→
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
|
2
≤
x
7
3
4
umgrislfupgr
⊢
G
∈
UMGraph
↔
G
∈
UPGraph
∧
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
|
2
≤
x
8
7
biimpri
⊢
G
∈
UPGraph
∧
iEdg
⁡
G
:
dom
⁡
iEdg
⁡
G
⟶
x
∈
𝒫
Vtx
⁡
G
|
2
≤
x
→
G
∈
UMGraph
9
6
8
syldan
⊢
G
∈
UPGraph
∧
G
∈
AcyclicGraph
→
G
∈
UMGraph