| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgruhgr |
|- ( G e. UPGraph -> G e. UHGraph ) |
| 2 |
1
|
anim1ci |
|- ( ( G e. UPGraph /\ G e. AcyclicGraph ) -> ( G e. AcyclicGraph /\ G e. UHGraph ) ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 5 |
3 4
|
acycgrislfgr |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 6 |
2 5
|
syl |
|- ( ( G e. UPGraph /\ G e. AcyclicGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 7 |
3 4
|
umgrislfupgr |
|- ( G e. UMGraph <-> ( G e. UPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) |
| 8 |
7
|
biimpri |
|- ( ( G e. UPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) -> G e. UMGraph ) |
| 9 |
6 8
|
syldan |
|- ( ( G e. UPGraph /\ G e. AcyclicGraph ) -> G e. UMGraph ) |