Step |
Hyp |
Ref |
Expression |
1 |
|
acycgrislfgr.1 |
|- V = ( Vtx ` G ) |
2 |
|
acycgrislfgr.2 |
|- I = ( iEdg ` G ) |
3 |
|
isacycgr |
|- ( G e. UHGraph -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
4 |
3
|
biimpac |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
5 |
|
loop1cycl |
|- ( G e. UHGraph -> ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = a ) <-> { a } e. ( Edg ` G ) ) ) |
6 |
|
3simpa |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = a ) -> ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) |
7 |
6
|
2eximi |
|- ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = a ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) |
8 |
5 7
|
syl6bir |
|- ( G e. UHGraph -> ( { a } e. ( Edg ` G ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) ) |
9 |
8
|
exlimdv |
|- ( G e. UHGraph -> ( E. a { a } e. ( Edg ` G ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) ) |
10 |
|
vex |
|- f e. _V |
11 |
|
hash1n0 |
|- ( ( f e. _V /\ ( # ` f ) = 1 ) -> f =/= (/) ) |
12 |
10 11
|
mpan |
|- ( ( # ` f ) = 1 -> f =/= (/) ) |
13 |
12
|
anim2i |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
14 |
13
|
2eximi |
|- ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
15 |
9 14
|
syl6 |
|- ( G e. UHGraph -> ( E. a { a } e. ( Edg ` G ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
16 |
15
|
con3d |
|- ( G e. UHGraph -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. E. a { a } e. ( Edg ` G ) ) ) |
17 |
16
|
adantl |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. E. a { a } e. ( Edg ` G ) ) ) |
18 |
4 17
|
mpd |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> -. E. a { a } e. ( Edg ` G ) ) |
19 |
1 2
|
lfuhgr3 |
|- ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> -. E. a { a } e. ( Edg ` G ) ) ) |
20 |
19
|
adantl |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> -. E. a { a } e. ( Edg ` G ) ) ) |
21 |
18 20
|
mpbird |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) |