| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acycgrislfgr.1 |
|- V = ( Vtx ` G ) |
| 2 |
|
acycgrislfgr.2 |
|- I = ( iEdg ` G ) |
| 3 |
|
isacycgr |
|- ( G e. UHGraph -> ( G e. AcyclicGraph <-> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 4 |
3
|
biimpac |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 5 |
|
loop1cycl |
|- ( G e. UHGraph -> ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = a ) <-> { a } e. ( Edg ` G ) ) ) |
| 6 |
|
3simpa |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = a ) -> ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) |
| 7 |
6
|
2eximi |
|- ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = a ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) |
| 8 |
5 7
|
biimtrrdi |
|- ( G e. UHGraph -> ( { a } e. ( Edg ` G ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) ) |
| 9 |
8
|
exlimdv |
|- ( G e. UHGraph -> ( E. a { a } e. ( Edg ` G ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) ) ) |
| 10 |
|
vex |
|- f e. _V |
| 11 |
|
hash1n0 |
|- ( ( f e. _V /\ ( # ` f ) = 1 ) -> f =/= (/) ) |
| 12 |
10 11
|
mpan |
|- ( ( # ` f ) = 1 -> f =/= (/) ) |
| 13 |
12
|
anim2i |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 14 |
13
|
2eximi |
|- ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) |
| 15 |
9 14
|
syl6 |
|- ( G e. UHGraph -> ( E. a { a } e. ( Edg ` G ) -> E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) ) |
| 16 |
15
|
con3d |
|- ( G e. UHGraph -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. E. a { a } e. ( Edg ` G ) ) ) |
| 17 |
16
|
adantl |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> ( -. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) -> -. E. a { a } e. ( Edg ` G ) ) ) |
| 18 |
4 17
|
mpd |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> -. E. a { a } e. ( Edg ` G ) ) |
| 19 |
1 2
|
lfuhgr3 |
|- ( G e. UHGraph -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> -. E. a { a } e. ( Edg ` G ) ) ) |
| 20 |
19
|
adantl |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> -. E. a { a } e. ( Edg ` G ) ) ) |
| 21 |
18 20
|
mpbird |
|- ( ( G e. AcyclicGraph /\ G e. UHGraph ) -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) |