Step |
Hyp |
Ref |
Expression |
1 |
|
cyclprop |
|- ( f ( Cycles ` G ) p -> ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) ) |
2 |
|
fveq2 |
|- ( ( # ` f ) = 1 -> ( p ` ( # ` f ) ) = ( p ` 1 ) ) |
3 |
2
|
eqeq2d |
|- ( ( # ` f ) = 1 -> ( ( p ` 0 ) = ( p ` ( # ` f ) ) <-> ( p ` 0 ) = ( p ` 1 ) ) ) |
4 |
3
|
anbi2d |
|- ( ( # ` f ) = 1 -> ( ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) <-> ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) ) ) |
5 |
4
|
biimpd |
|- ( ( # ` f ) = 1 -> ( ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` ( # ` f ) ) ) -> ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) ) ) |
6 |
1 5
|
mpan9 |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) ) |
7 |
|
pthiswlk |
|- ( f ( Paths ` G ) p -> f ( Walks ` G ) p ) |
8 |
7
|
anim1i |
|- ( ( f ( Paths ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) -> ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) ) |
9 |
6 8
|
syl |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) ) |
10 |
9
|
anim1i |
|- ( ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) /\ ( # ` f ) = 1 ) -> ( ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) /\ ( # ` f ) = 1 ) ) |
11 |
10
|
anabss3 |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) /\ ( # ` f ) = 1 ) ) |
12 |
|
df-3an |
|- ( ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) /\ ( # ` f ) = 1 ) <-> ( ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) ) /\ ( # ` f ) = 1 ) ) |
13 |
11 12
|
sylibr |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) /\ ( # ` f ) = 1 ) ) |
14 |
|
3ancomb |
|- ( ( f ( Walks ` G ) p /\ ( p ` 0 ) = ( p ` 1 ) /\ ( # ` f ) = 1 ) <-> ( f ( Walks ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = ( p ` 1 ) ) ) |
15 |
13 14
|
sylib |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( f ( Walks ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = ( p ` 1 ) ) ) |
16 |
|
wlkl1loop |
|- ( ( ( Fun ( iEdg ` G ) /\ f ( Walks ` G ) p ) /\ ( ( # ` f ) = 1 /\ ( p ` 0 ) = ( p ` 1 ) ) ) -> { ( p ` 0 ) } e. ( Edg ` G ) ) |
17 |
16
|
expl |
|- ( Fun ( iEdg ` G ) -> ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 1 /\ ( p ` 0 ) = ( p ` 1 ) ) ) -> { ( p ` 0 ) } e. ( Edg ` G ) ) ) |
18 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
19 |
18
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
20 |
17 19
|
syl11 |
|- ( ( f ( Walks ` G ) p /\ ( ( # ` f ) = 1 /\ ( p ` 0 ) = ( p ` 1 ) ) ) -> ( G e. UHGraph -> { ( p ` 0 ) } e. ( Edg ` G ) ) ) |
21 |
20
|
3impb |
|- ( ( f ( Walks ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = ( p ` 1 ) ) -> ( G e. UHGraph -> { ( p ` 0 ) } e. ( Edg ` G ) ) ) |
22 |
15 21
|
syl |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 ) -> ( G e. UHGraph -> { ( p ` 0 ) } e. ( Edg ` G ) ) ) |
23 |
22
|
3adant3 |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) -> ( G e. UHGraph -> { ( p ` 0 ) } e. ( Edg ` G ) ) ) |
24 |
|
sneq |
|- ( ( p ` 0 ) = A -> { ( p ` 0 ) } = { A } ) |
25 |
24
|
eleq1d |
|- ( ( p ` 0 ) = A -> ( { ( p ` 0 ) } e. ( Edg ` G ) <-> { A } e. ( Edg ` G ) ) ) |
26 |
25
|
3ad2ant3 |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) -> ( { ( p ` 0 ) } e. ( Edg ` G ) <-> { A } e. ( Edg ` G ) ) ) |
27 |
23 26
|
sylibd |
|- ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) -> ( G e. UHGraph -> { A } e. ( Edg ` G ) ) ) |
28 |
27
|
exlimivv |
|- ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) -> ( G e. UHGraph -> { A } e. ( Edg ` G ) ) ) |
29 |
28
|
com12 |
|- ( G e. UHGraph -> ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) -> { A } e. ( Edg ` G ) ) ) |
30 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
31 |
30
|
eleq2i |
|- ( { A } e. ( Edg ` G ) <-> { A } e. ran ( iEdg ` G ) ) |
32 |
|
elrnrexdm |
|- ( Fun ( iEdg ` G ) -> ( { A } e. ran ( iEdg ` G ) -> E. j e. dom ( iEdg ` G ) { A } = ( ( iEdg ` G ) ` j ) ) ) |
33 |
|
eqcom |
|- ( { A } = ( ( iEdg ` G ) ` j ) <-> ( ( iEdg ` G ) ` j ) = { A } ) |
34 |
33
|
rexbii |
|- ( E. j e. dom ( iEdg ` G ) { A } = ( ( iEdg ` G ) ` j ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { A } ) |
35 |
32 34
|
syl6ib |
|- ( Fun ( iEdg ` G ) -> ( { A } e. ran ( iEdg ` G ) -> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { A } ) ) |
36 |
31 35
|
syl5bi |
|- ( Fun ( iEdg ` G ) -> ( { A } e. ( Edg ` G ) -> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { A } ) ) |
37 |
19 36
|
syl |
|- ( G e. UHGraph -> ( { A } e. ( Edg ` G ) -> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { A } ) ) |
38 |
|
df-rex |
|- ( E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { A } <-> E. j ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = { A } ) ) |
39 |
37 38
|
syl6ib |
|- ( G e. UHGraph -> ( { A } e. ( Edg ` G ) -> E. j ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = { A } ) ) ) |
40 |
18
|
lp1cycl |
|- ( ( G e. UHGraph /\ j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = { A } ) -> <" j "> ( Cycles ` G ) <" A A "> ) |
41 |
40
|
3expib |
|- ( G e. UHGraph -> ( ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = { A } ) -> <" j "> ( Cycles ` G ) <" A A "> ) ) |
42 |
41
|
eximdv |
|- ( G e. UHGraph -> ( E. j ( j e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` j ) = { A } ) -> E. j <" j "> ( Cycles ` G ) <" A A "> ) ) |
43 |
39 42
|
syld |
|- ( G e. UHGraph -> ( { A } e. ( Edg ` G ) -> E. j <" j "> ( Cycles ` G ) <" A A "> ) ) |
44 |
|
s1len |
|- ( # ` <" j "> ) = 1 |
45 |
44
|
ax-gen |
|- A. j ( # ` <" j "> ) = 1 |
46 |
|
19.29r |
|- ( ( E. j <" j "> ( Cycles ` G ) <" A A "> /\ A. j ( # ` <" j "> ) = 1 ) -> E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) ) |
47 |
45 46
|
mpan2 |
|- ( E. j <" j "> ( Cycles ` G ) <" A A "> -> E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) ) |
48 |
43 47
|
syl6 |
|- ( G e. UHGraph -> ( { A } e. ( Edg ` G ) -> E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) ) ) |
49 |
48
|
imp |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) ) |
50 |
|
uhgredgn0 |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> { A } e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |
51 |
|
eldifsni |
|- ( { A } e. ( ~P ( Vtx ` G ) \ { (/) } ) -> { A } =/= (/) ) |
52 |
50 51
|
syl |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> { A } =/= (/) ) |
53 |
|
snnzb |
|- ( A e. _V <-> { A } =/= (/) ) |
54 |
52 53
|
sylibr |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> A e. _V ) |
55 |
|
s2fv0 |
|- ( A e. _V -> ( <" A A "> ` 0 ) = A ) |
56 |
54 55
|
syl |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> ( <" A A "> ` 0 ) = A ) |
57 |
56
|
alrimiv |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> A. j ( <" A A "> ` 0 ) = A ) |
58 |
|
19.29r |
|- ( ( E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) /\ A. j ( <" A A "> ` 0 ) = A ) -> E. j ( ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) /\ ( <" A A "> ` 0 ) = A ) ) |
59 |
49 57 58
|
syl2anc |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> E. j ( ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) /\ ( <" A A "> ` 0 ) = A ) ) |
60 |
|
df-3an |
|- ( ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) <-> ( ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) /\ ( <" A A "> ` 0 ) = A ) ) |
61 |
60
|
exbii |
|- ( E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) <-> E. j ( ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 ) /\ ( <" A A "> ` 0 ) = A ) ) |
62 |
59 61
|
sylibr |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) |
63 |
|
s1cli |
|- <" j "> e. Word _V |
64 |
|
breq1 |
|- ( f = <" j "> -> ( f ( Cycles ` G ) <" A A "> <-> <" j "> ( Cycles ` G ) <" A A "> ) ) |
65 |
|
fveqeq2 |
|- ( f = <" j "> -> ( ( # ` f ) = 1 <-> ( # ` <" j "> ) = 1 ) ) |
66 |
64 65
|
3anbi12d |
|- ( f = <" j "> -> ( ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) <-> ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) ) |
67 |
66
|
rspcev |
|- ( ( <" j "> e. Word _V /\ ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) -> E. f e. Word _V ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) |
68 |
63 67
|
mpan |
|- ( ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) -> E. f e. Word _V ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) |
69 |
|
rexex |
|- ( E. f e. Word _V ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) -> E. f ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) |
70 |
68 69
|
syl |
|- ( ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) -> E. f ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) |
71 |
70
|
exlimiv |
|- ( E. j ( <" j "> ( Cycles ` G ) <" A A "> /\ ( # ` <" j "> ) = 1 /\ ( <" A A "> ` 0 ) = A ) -> E. f ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) |
72 |
62 71
|
syl |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> E. f ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) |
73 |
|
s2cli |
|- <" A A "> e. Word _V |
74 |
|
breq2 |
|- ( p = <" A A "> -> ( f ( Cycles ` G ) p <-> f ( Cycles ` G ) <" A A "> ) ) |
75 |
|
fveq1 |
|- ( p = <" A A "> -> ( p ` 0 ) = ( <" A A "> ` 0 ) ) |
76 |
75
|
eqeq1d |
|- ( p = <" A A "> -> ( ( p ` 0 ) = A <-> ( <" A A "> ` 0 ) = A ) ) |
77 |
74 76
|
3anbi13d |
|- ( p = <" A A "> -> ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) <-> ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) ) |
78 |
77
|
rspcev |
|- ( ( <" A A "> e. Word _V /\ ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) ) -> E. p e. Word _V ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) ) |
79 |
73 78
|
mpan |
|- ( ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) -> E. p e. Word _V ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) ) |
80 |
|
rexex |
|- ( E. p e. Word _V ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) -> E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) ) |
81 |
79 80
|
syl |
|- ( ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) -> E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) ) |
82 |
81
|
eximi |
|- ( E. f ( f ( Cycles ` G ) <" A A "> /\ ( # ` f ) = 1 /\ ( <" A A "> ` 0 ) = A ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) ) |
83 |
72 82
|
syl |
|- ( ( G e. UHGraph /\ { A } e. ( Edg ` G ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) ) |
84 |
83
|
ex |
|- ( G e. UHGraph -> ( { A } e. ( Edg ` G ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) ) ) |
85 |
29 84
|
impbid |
|- ( G e. UHGraph -> ( E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 1 /\ ( p ` 0 ) = A ) <-> { A } e. ( Edg ` G ) ) ) |