| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cyclprop |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
eqeq2d |
|
| 4 |
3
|
anbi2d |
|
| 5 |
4
|
biimpd |
|
| 6 |
1 5
|
mpan9 |
|
| 7 |
|
pthiswlk |
|
| 8 |
7
|
anim1i |
|
| 9 |
6 8
|
syl |
|
| 10 |
9
|
anim1i |
|
| 11 |
10
|
anabss3 |
|
| 12 |
|
df-3an |
|
| 13 |
11 12
|
sylibr |
|
| 14 |
|
3ancomb |
|
| 15 |
13 14
|
sylib |
|
| 16 |
|
wlkl1loop |
|
| 17 |
16
|
expl |
|
| 18 |
|
eqid |
|
| 19 |
18
|
uhgrfun |
|
| 20 |
17 19
|
syl11 |
|
| 21 |
20
|
3impb |
|
| 22 |
15 21
|
syl |
|
| 23 |
22
|
3adant3 |
|
| 24 |
|
sneq |
|
| 25 |
24
|
eleq1d |
|
| 26 |
25
|
3ad2ant3 |
|
| 27 |
23 26
|
sylibd |
|
| 28 |
27
|
exlimivv |
|
| 29 |
28
|
com12 |
|
| 30 |
|
edgval |
|
| 31 |
30
|
eleq2i |
|
| 32 |
|
elrnrexdm |
|
| 33 |
|
eqcom |
|
| 34 |
33
|
rexbii |
|
| 35 |
32 34
|
imbitrdi |
|
| 36 |
31 35
|
biimtrid |
|
| 37 |
19 36
|
syl |
|
| 38 |
|
df-rex |
|
| 39 |
37 38
|
imbitrdi |
|
| 40 |
18
|
lp1cycl |
|
| 41 |
40
|
3expib |
|
| 42 |
41
|
eximdv |
|
| 43 |
39 42
|
syld |
|
| 44 |
|
s1len |
|
| 45 |
44
|
ax-gen |
|
| 46 |
|
19.29r |
|
| 47 |
45 46
|
mpan2 |
|
| 48 |
43 47
|
syl6 |
|
| 49 |
48
|
imp |
|
| 50 |
|
uhgredgn0 |
|
| 51 |
|
eldifsni |
|
| 52 |
50 51
|
syl |
|
| 53 |
|
snnzb |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
|
s2fv0 |
|
| 56 |
54 55
|
syl |
|
| 57 |
56
|
alrimiv |
|
| 58 |
|
19.29r |
|
| 59 |
49 57 58
|
syl2anc |
|
| 60 |
|
df-3an |
|
| 61 |
60
|
exbii |
|
| 62 |
59 61
|
sylibr |
|
| 63 |
|
s1cli |
|
| 64 |
|
breq1 |
|
| 65 |
|
fveqeq2 |
|
| 66 |
64 65
|
3anbi12d |
|
| 67 |
66
|
rspcev |
|
| 68 |
63 67
|
mpan |
|
| 69 |
|
rexex |
|
| 70 |
68 69
|
syl |
|
| 71 |
70
|
exlimiv |
|
| 72 |
62 71
|
syl |
|
| 73 |
|
s2cli |
|
| 74 |
|
breq2 |
|
| 75 |
|
fveq1 |
|
| 76 |
75
|
eqeq1d |
|
| 77 |
74 76
|
3anbi13d |
|
| 78 |
77
|
rspcev |
|
| 79 |
73 78
|
mpan |
|
| 80 |
|
rexex |
|
| 81 |
79 80
|
syl |
|
| 82 |
81
|
eximi |
|
| 83 |
72 82
|
syl |
|
| 84 |
83
|
ex |
|
| 85 |
29 84
|
impbid |
|