Metamath Proof Explorer


Theorem 2cycld

Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023)

Ref Expression
Hypotheses 2cycld.1 P=⟨“ABC”⟩
2cycld.2 F=⟨“JK”⟩
2cycld.3 φAVBVCV
2cycld.4 φABBC
2cycld.5 φABIJBCIK
2cycld.6 V=VtxG
2cycld.7 I=iEdgG
2cycld.8 φJK
2cycld.9 φA=C
Assertion 2cycld φFCyclesGP

Proof

Step Hyp Ref Expression
1 2cycld.1 P=⟨“ABC”⟩
2 2cycld.2 F=⟨“JK”⟩
3 2cycld.3 φAVBVCV
4 2cycld.4 φABBC
5 2cycld.5 φABIJBCIK
6 2cycld.6 V=VtxG
7 2cycld.7 I=iEdgG
8 2cycld.8 φJK
9 2cycld.9 φA=C
10 1 2 3 4 5 6 7 8 2pthd φFPathsGP
11 1 fveq1i P0=⟨“ABC”⟩0
12 s3fv0 AV⟨“ABC”⟩0=A
13 11 12 eqtrid AVP0=A
14 13 3ad2ant1 AVBVCVP0=A
15 14 adantr AVBVCVA=CP0=A
16 simpr AVBVCVA=CA=C
17 2 fveq2i F=⟨“JK”⟩
18 s2len ⟨“JK”⟩=2
19 17 18 eqtri F=2
20 1 19 fveq12i PF=⟨“ABC”⟩2
21 s3fv2 CV⟨“ABC”⟩2=C
22 20 21 eqtr2id CVC=PF
23 22 3ad2ant3 AVBVCVC=PF
24 23 adantr AVBVCVA=CC=PF
25 15 16 24 3eqtrd AVBVCVA=CP0=PF
26 3 9 25 syl2anc φP0=PF
27 iscycl FCyclesGPFPathsGPP0=PF
28 10 26 27 sylanbrc φFCyclesGP