Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2cycld.1 | |
|
2cycld.2 | |
||
2cycld.3 | |
||
2cycld.4 | |
||
2cycld.5 | |
||
2cycld.6 | |
||
2cycld.7 | |
||
2cycld.8 | |
||
2cycld.9 | |
||
Assertion | 2cycld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cycld.1 | |
|
2 | 2cycld.2 | |
|
3 | 2cycld.3 | |
|
4 | 2cycld.4 | |
|
5 | 2cycld.5 | |
|
6 | 2cycld.6 | |
|
7 | 2cycld.7 | |
|
8 | 2cycld.8 | |
|
9 | 2cycld.9 | |
|
10 | 1 2 3 4 5 6 7 8 | 2pthd | |
11 | 1 | fveq1i | |
12 | s3fv0 | |
|
13 | 11 12 | eqtrid | |
14 | 13 | 3ad2ant1 | |
15 | 14 | adantr | |
16 | simpr | |
|
17 | 2 | fveq2i | |
18 | s2len | |
|
19 | 17 18 | eqtri | |
20 | 1 19 | fveq12i | |
21 | s3fv2 | |
|
22 | 20 21 | eqtr2id | |
23 | 22 | 3ad2ant3 | |
24 | 23 | adantr | |
25 | 15 16 24 | 3eqtrd | |
26 | 3 9 25 | syl2anc | |
27 | iscycl | |
|
28 | 10 26 27 | sylanbrc | |