Metamath Proof Explorer


Theorem 2cycl2d

Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023)

Ref Expression
Hypotheses 2cycl2d.1 P=⟨“ABA”⟩
2cycl2d.2 F=⟨“JK”⟩
2cycl2d.3 φAVBV
2cycl2d.4 φAB
2cycl2d.5 φABIJABIK
2cycl2d.6 V=VtxG
2cycl2d.7 I=iEdgG
2cycl2d.8 φJK
Assertion 2cycl2d φFCyclesGP

Proof

Step Hyp Ref Expression
1 2cycl2d.1 P=⟨“ABA”⟩
2 2cycl2d.2 F=⟨“JK”⟩
3 2cycl2d.3 φAVBV
4 2cycl2d.4 φAB
5 2cycl2d.5 φABIJABIK
6 2cycl2d.6 V=VtxG
7 2cycl2d.7 I=iEdgG
8 2cycl2d.8 φJK
9 simpl AVBVAV
10 3 9 jccir φAVBVAV
11 df-3an AVBVAVAVBVAV
12 10 11 sylibr φAVBVAV
13 4 necomd φBA
14 4 13 jca φABBA
15 prcom AB=BA
16 15 sseq1i ABIKBAIK
17 16 anbi2i ABIJABIKABIJBAIK
18 5 17 sylib φABIJBAIK
19 eqidd φA=A
20 1 2 12 14 18 6 7 8 19 2cycld φFCyclesGP