Metamath Proof Explorer


Theorem 2cycl2d

Description: Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023)

Ref Expression
Hypotheses 2cycl2d.1
|- P = <" A B A ">
2cycl2d.2
|- F = <" J K ">
2cycl2d.3
|- ( ph -> ( A e. V /\ B e. V ) )
2cycl2d.4
|- ( ph -> A =/= B )
2cycl2d.5
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { A , B } C_ ( I ` K ) ) )
2cycl2d.6
|- V = ( Vtx ` G )
2cycl2d.7
|- I = ( iEdg ` G )
2cycl2d.8
|- ( ph -> J =/= K )
Assertion 2cycl2d
|- ( ph -> F ( Cycles ` G ) P )

Proof

Step Hyp Ref Expression
1 2cycl2d.1
 |-  P = <" A B A ">
2 2cycl2d.2
 |-  F = <" J K ">
3 2cycl2d.3
 |-  ( ph -> ( A e. V /\ B e. V ) )
4 2cycl2d.4
 |-  ( ph -> A =/= B )
5 2cycl2d.5
 |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { A , B } C_ ( I ` K ) ) )
6 2cycl2d.6
 |-  V = ( Vtx ` G )
7 2cycl2d.7
 |-  I = ( iEdg ` G )
8 2cycl2d.8
 |-  ( ph -> J =/= K )
9 simpl
 |-  ( ( A e. V /\ B e. V ) -> A e. V )
10 3 9 jccir
 |-  ( ph -> ( ( A e. V /\ B e. V ) /\ A e. V ) )
11 df-3an
 |-  ( ( A e. V /\ B e. V /\ A e. V ) <-> ( ( A e. V /\ B e. V ) /\ A e. V ) )
12 10 11 sylibr
 |-  ( ph -> ( A e. V /\ B e. V /\ A e. V ) )
13 4 necomd
 |-  ( ph -> B =/= A )
14 4 13 jca
 |-  ( ph -> ( A =/= B /\ B =/= A ) )
15 prcom
 |-  { A , B } = { B , A }
16 15 sseq1i
 |-  ( { A , B } C_ ( I ` K ) <-> { B , A } C_ ( I ` K ) )
17 16 anbi2i
 |-  ( ( { A , B } C_ ( I ` J ) /\ { A , B } C_ ( I ` K ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , A } C_ ( I ` K ) ) )
18 5 17 sylib
 |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , A } C_ ( I ` K ) ) )
19 eqidd
 |-  ( ph -> A = A )
20 1 2 12 14 18 6 7 8 19 2cycld
 |-  ( ph -> F ( Cycles ` G ) P )