| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cycl2d.1 |
|- P = <" A B A "> |
| 2 |
|
2cycl2d.2 |
|- F = <" J K "> |
| 3 |
|
2cycl2d.3 |
|- ( ph -> ( A e. V /\ B e. V ) ) |
| 4 |
|
2cycl2d.4 |
|- ( ph -> A =/= B ) |
| 5 |
|
2cycl2d.5 |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { A , B } C_ ( I ` K ) ) ) |
| 6 |
|
2cycl2d.6 |
|- V = ( Vtx ` G ) |
| 7 |
|
2cycl2d.7 |
|- I = ( iEdg ` G ) |
| 8 |
|
2cycl2d.8 |
|- ( ph -> J =/= K ) |
| 9 |
|
simpl |
|- ( ( A e. V /\ B e. V ) -> A e. V ) |
| 10 |
3 9
|
jccir |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ A e. V ) ) |
| 11 |
|
df-3an |
|- ( ( A e. V /\ B e. V /\ A e. V ) <-> ( ( A e. V /\ B e. V ) /\ A e. V ) ) |
| 12 |
10 11
|
sylibr |
|- ( ph -> ( A e. V /\ B e. V /\ A e. V ) ) |
| 13 |
4
|
necomd |
|- ( ph -> B =/= A ) |
| 14 |
4 13
|
jca |
|- ( ph -> ( A =/= B /\ B =/= A ) ) |
| 15 |
|
prcom |
|- { A , B } = { B , A } |
| 16 |
15
|
sseq1i |
|- ( { A , B } C_ ( I ` K ) <-> { B , A } C_ ( I ` K ) ) |
| 17 |
16
|
anbi2i |
|- ( ( { A , B } C_ ( I ` J ) /\ { A , B } C_ ( I ` K ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , A } C_ ( I ` K ) ) ) |
| 18 |
5 17
|
sylib |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , A } C_ ( I ` K ) ) ) |
| 19 |
|
eqidd |
|- ( ph -> A = A ) |
| 20 |
1 2 12 14 18 6 7 8 19
|
2cycld |
|- ( ph -> F ( Cycles ` G ) P ) |