Step |
Hyp |
Ref |
Expression |
1 |
|
2cycl2d.1 |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐴 ”〉 |
2 |
|
2cycl2d.2 |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
3 |
|
2cycl2d.3 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
4 |
|
2cycl2d.4 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
5 |
|
2cycl2d.5 |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
6 |
|
2cycl2d.6 |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
7 |
|
2cycl2d.7 |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
8 |
|
2cycl2d.8 |
⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
10 |
3 9
|
jccir |
⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) ) |
11 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ↔ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) ) |
12 |
10 11
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
13 |
4
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
14 |
4 13
|
jca |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) |
15 |
|
prcom |
⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } |
16 |
15
|
sseq1i |
⊢ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐾 ) ↔ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐾 ) ) |
17 |
16
|
anbi2i |
⊢ ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
18 |
5 17
|
sylib |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐴 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
19 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
20 |
1 2 12 14 18 6 7 8 19
|
2cycld |
⊢ ( 𝜑 → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |