| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgr2cycllem.1 |
|
| 2 |
|
umgr2cycllem.2 |
|
| 3 |
|
umgr2cycllem.3 |
|
| 4 |
|
umgr2cycllem.4 |
|
| 5 |
|
umgr2cycllem.5 |
|
| 6 |
|
umgr2cycllem.6 |
|
| 7 |
|
umgruhgr |
|
| 8 |
2
|
uhgrfun |
|
| 9 |
3 7 8
|
3syl |
|
| 10 |
2
|
iedgedg |
|
| 11 |
9 4 10
|
syl2anc |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
umgredg |
|
| 15 |
3 11 14
|
syl2anc |
|
| 16 |
|
ax-5 |
|
| 17 |
|
alral |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
r19.29 |
|
| 20 |
18 19
|
sylan |
|
| 21 |
|
eqid |
|
| 22 |
|
simp2 |
|
| 23 |
|
simp3l |
|
| 24 |
|
eqimss2 |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
3ad2ant3 |
|
| 27 |
6
|
sseq2d |
|
| 28 |
24 27
|
imbitrid |
|
| 29 |
28
|
adantld |
|
| 30 |
29
|
adantld |
|
| 31 |
30
|
3impib |
|
| 32 |
26 31
|
jca |
|
| 33 |
5
|
3ad2ant1 |
|
| 34 |
21 1 22 23 32 12 2 33
|
2cycl2d |
|
| 35 |
34
|
3expib |
|
| 36 |
35
|
exp4c |
|
| 37 |
36
|
com23 |
|
| 38 |
37
|
imp4a |
|
| 39 |
|
s3cli |
|
| 40 |
|
breq2 |
|
| 41 |
40
|
rspcev |
|
| 42 |
39 41
|
mpan |
|
| 43 |
|
rexex |
|
| 44 |
42 43
|
syl |
|
| 45 |
38 44
|
syl8 |
|
| 46 |
45
|
rexlimdv |
|
| 47 |
20 46
|
syl5 |
|
| 48 |
47
|
expd |
|
| 49 |
48
|
rexlimdv |
|
| 50 |
15 49
|
mpd |
|