Metamath Proof Explorer


Theorem umgr2cycllem

Description: Lemma for umgr2cycl . (Contributed by BTernaryTau, 17-Oct-2023)

Ref Expression
Hypotheses umgr2cycllem.1 F = ⟨“ JK ”⟩
umgr2cycllem.2 I = iEdg G
umgr2cycllem.3 φ G UMGraph
umgr2cycllem.4 φ J dom I
umgr2cycllem.5 φ J K
umgr2cycllem.6 φ I J = I K
Assertion umgr2cycllem φ p F Cycles G p

Proof

Step Hyp Ref Expression
1 umgr2cycllem.1 F = ⟨“ JK ”⟩
2 umgr2cycllem.2 I = iEdg G
3 umgr2cycllem.3 φ G UMGraph
4 umgr2cycllem.4 φ J dom I
5 umgr2cycllem.5 φ J K
6 umgr2cycllem.6 φ I J = I K
7 umgruhgr G UMGraph G UHGraph
8 2 uhgrfun G UHGraph Fun I
9 3 7 8 3syl φ Fun I
10 2 iedgedg Fun I J dom I I J Edg G
11 9 4 10 syl2anc φ I J Edg G
12 eqid Vtx G = Vtx G
13 eqid Edg G = Edg G
14 12 13 umgredg G UMGraph I J Edg G a Vtx G b Vtx G a b I J = a b
15 3 11 14 syl2anc φ a Vtx G b Vtx G a b I J = a b
16 ax-5 a Vtx G b a Vtx G
17 alral b a Vtx G b Vtx G a Vtx G
18 16 17 syl a Vtx G b Vtx G a Vtx G
19 r19.29 b Vtx G a Vtx G b Vtx G a b I J = a b b Vtx G a Vtx G a b I J = a b
20 18 19 sylan a Vtx G b Vtx G a b I J = a b b Vtx G a Vtx G a b I J = a b
21 eqid ⟨“ aba ”⟩ = ⟨“ aba ”⟩
22 simp2 φ a Vtx G b Vtx G a b I J = a b a Vtx G b Vtx G
23 simp3l φ a Vtx G b Vtx G a b I J = a b a b
24 eqimss2 I J = a b a b I J
25 24 adantl a b I J = a b a b I J
26 25 3ad2ant3 φ a Vtx G b Vtx G a b I J = a b a b I J
27 6 sseq2d φ a b I J a b I K
28 24 27 syl5ib φ I J = a b a b I K
29 28 adantld φ a b I J = a b a b I K
30 29 adantld φ a Vtx G b Vtx G a b I J = a b a b I K
31 30 3impib φ a Vtx G b Vtx G a b I J = a b a b I K
32 26 31 jca φ a Vtx G b Vtx G a b I J = a b a b I J a b I K
33 5 3ad2ant1 φ a Vtx G b Vtx G a b I J = a b J K
34 21 1 22 23 32 12 2 33 2cycl2d φ a Vtx G b Vtx G a b I J = a b F Cycles G ⟨“ aba ”⟩
35 34 3expib φ a Vtx G b Vtx G a b I J = a b F Cycles G ⟨“ aba ”⟩
36 35 exp4c φ a Vtx G b Vtx G a b I J = a b F Cycles G ⟨“ aba ”⟩
37 36 com23 φ b Vtx G a Vtx G a b I J = a b F Cycles G ⟨“ aba ”⟩
38 37 imp4a φ b Vtx G a Vtx G a b I J = a b F Cycles G ⟨“ aba ”⟩
39 s3cli ⟨“ aba ”⟩ Word V
40 breq2 p = ⟨“ aba ”⟩ F Cycles G p F Cycles G ⟨“ aba ”⟩
41 40 rspcev ⟨“ aba ”⟩ Word V F Cycles G ⟨“ aba ”⟩ p Word V F Cycles G p
42 39 41 mpan F Cycles G ⟨“ aba ”⟩ p Word V F Cycles G p
43 rexex p Word V F Cycles G p p F Cycles G p
44 42 43 syl F Cycles G ⟨“ aba ”⟩ p F Cycles G p
45 38 44 syl8 φ b Vtx G a Vtx G a b I J = a b p F Cycles G p
46 45 rexlimdv φ b Vtx G a Vtx G a b I J = a b p F Cycles G p
47 20 46 syl5 φ a Vtx G b Vtx G a b I J = a b p F Cycles G p
48 47 expd φ a Vtx G b Vtx G a b I J = a b p F Cycles G p
49 48 rexlimdv φ a Vtx G b Vtx G a b I J = a b p F Cycles G p
50 15 49 mpd φ p F Cycles G p