Metamath Proof Explorer


Theorem umgr2cycl

Description: A multigraph with two distinct edges that connect the same vertices has a 2-cycle. (Contributed by BTernaryTau, 17-Oct-2023)

Ref Expression
Hypothesis umgr2cycl.1 I=iEdgG
Assertion umgr2cycl GUMGraphjdomIkdomIIj=IkjkfpfCyclesGpf=2

Proof

Step Hyp Ref Expression
1 umgr2cycl.1 I=iEdgG
2 ax-5 jdomIkjdomI
3 alral kjdomIkdomIjdomI
4 2 3 syl jdomIkdomIjdomI
5 r19.29 kdomIjdomIkdomIIj=IkjkkdomIjdomIIj=Ikjk
6 4 5 sylan jdomIkdomIIj=IkjkkdomIjdomIIj=Ikjk
7 eqid ⟨“jk”⟩=⟨“jk”⟩
8 simp1 GUMGraphjdomIIj=IkjkGUMGraph
9 simp2 GUMGraphjdomIIj=IkjkjdomI
10 simp3r GUMGraphjdomIIj=Ikjkjk
11 simp3l GUMGraphjdomIIj=IkjkIj=Ik
12 7 1 8 9 10 11 umgr2cycllem GUMGraphjdomIIj=Ikjkp⟨“jk”⟩CyclesGp
13 s2len ⟨“jk”⟩=2
14 13 ax-gen p⟨“jk”⟩=2
15 19.29r p⟨“jk”⟩CyclesGpp⟨“jk”⟩=2p⟨“jk”⟩CyclesGp⟨“jk”⟩=2
16 s2cli ⟨“jk”⟩WordV
17 breq1 f=⟨“jk”⟩fCyclesGp⟨“jk”⟩CyclesGp
18 fveqeq2 f=⟨“jk”⟩f=2⟨“jk”⟩=2
19 17 18 anbi12d f=⟨“jk”⟩fCyclesGpf=2⟨“jk”⟩CyclesGp⟨“jk”⟩=2
20 19 rspcev ⟨“jk”⟩WordV⟨“jk”⟩CyclesGp⟨“jk”⟩=2fWordVfCyclesGpf=2
21 16 20 mpan ⟨“jk”⟩CyclesGp⟨“jk”⟩=2fWordVfCyclesGpf=2
22 rexex fWordVfCyclesGpf=2ffCyclesGpf=2
23 21 22 syl ⟨“jk”⟩CyclesGp⟨“jk”⟩=2ffCyclesGpf=2
24 23 eximi p⟨“jk”⟩CyclesGp⟨“jk”⟩=2pffCyclesGpf=2
25 excomim pffCyclesGpf=2fpfCyclesGpf=2
26 15 24 25 3syl p⟨“jk”⟩CyclesGpp⟨“jk”⟩=2fpfCyclesGpf=2
27 12 14 26 sylancl GUMGraphjdomIIj=IkjkfpfCyclesGpf=2
28 27 3expib GUMGraphjdomIIj=IkjkfpfCyclesGpf=2
29 28 rexlimdvw GUMGraphkdomIjdomIIj=IkjkfpfCyclesGpf=2
30 6 29 syl5 GUMGraphjdomIkdomIIj=IkjkfpfCyclesGpf=2
31 30 expd GUMGraphjdomIkdomIIj=IkjkfpfCyclesGpf=2
32 31 rexlimdv GUMGraphjdomIkdomIIj=IkjkfpfCyclesGpf=2
33 32 imp GUMGraphjdomIkdomIIj=IkjkfpfCyclesGpf=2