Metamath Proof Explorer


Theorem umgr2cycl

Description: A multigraph with two distinct edges that connect the same vertices has a 2-cycle. (Contributed by BTernaryTau, 17-Oct-2023)

Ref Expression
Hypothesis umgr2cycl.1 I = iEdg G
Assertion umgr2cycl G UMGraph j dom I k dom I I j = I k j k f p f Cycles G p f = 2

Proof

Step Hyp Ref Expression
1 umgr2cycl.1 I = iEdg G
2 ax-5 j dom I k j dom I
3 alral k j dom I k dom I j dom I
4 2 3 syl j dom I k dom I j dom I
5 r19.29 k dom I j dom I k dom I I j = I k j k k dom I j dom I I j = I k j k
6 4 5 sylan j dom I k dom I I j = I k j k k dom I j dom I I j = I k j k
7 eqid ⟨“ jk ”⟩ = ⟨“ jk ”⟩
8 simp1 G UMGraph j dom I I j = I k j k G UMGraph
9 simp2 G UMGraph j dom I I j = I k j k j dom I
10 simp3r G UMGraph j dom I I j = I k j k j k
11 simp3l G UMGraph j dom I I j = I k j k I j = I k
12 7 1 8 9 10 11 umgr2cycllem G UMGraph j dom I I j = I k j k p ⟨“ jk ”⟩ Cycles G p
13 s2len ⟨“ jk ”⟩ = 2
14 13 ax-gen p ⟨“ jk ”⟩ = 2
15 19.29r p ⟨“ jk ”⟩ Cycles G p p ⟨“ jk ”⟩ = 2 p ⟨“ jk ”⟩ Cycles G p ⟨“ jk ”⟩ = 2
16 s2cli ⟨“ jk ”⟩ Word V
17 breq1 f = ⟨“ jk ”⟩ f Cycles G p ⟨“ jk ”⟩ Cycles G p
18 fveqeq2 f = ⟨“ jk ”⟩ f = 2 ⟨“ jk ”⟩ = 2
19 17 18 anbi12d f = ⟨“ jk ”⟩ f Cycles G p f = 2 ⟨“ jk ”⟩ Cycles G p ⟨“ jk ”⟩ = 2
20 19 rspcev ⟨“ jk ”⟩ Word V ⟨“ jk ”⟩ Cycles G p ⟨“ jk ”⟩ = 2 f Word V f Cycles G p f = 2
21 16 20 mpan ⟨“ jk ”⟩ Cycles G p ⟨“ jk ”⟩ = 2 f Word V f Cycles G p f = 2
22 rexex f Word V f Cycles G p f = 2 f f Cycles G p f = 2
23 21 22 syl ⟨“ jk ”⟩ Cycles G p ⟨“ jk ”⟩ = 2 f f Cycles G p f = 2
24 23 eximi p ⟨“ jk ”⟩ Cycles G p ⟨“ jk ”⟩ = 2 p f f Cycles G p f = 2
25 excomim p f f Cycles G p f = 2 f p f Cycles G p f = 2
26 15 24 25 3syl p ⟨“ jk ”⟩ Cycles G p p ⟨“ jk ”⟩ = 2 f p f Cycles G p f = 2
27 12 14 26 sylancl G UMGraph j dom I I j = I k j k f p f Cycles G p f = 2
28 27 3expib G UMGraph j dom I I j = I k j k f p f Cycles G p f = 2
29 28 rexlimdvw G UMGraph k dom I j dom I I j = I k j k f p f Cycles G p f = 2
30 6 29 syl5 G UMGraph j dom I k dom I I j = I k j k f p f Cycles G p f = 2
31 30 expd G UMGraph j dom I k dom I I j = I k j k f p f Cycles G p f = 2
32 31 rexlimdv G UMGraph j dom I k dom I I j = I k j k f p f Cycles G p f = 2
33 32 imp G UMGraph j dom I k dom I I j = I k j k f p f Cycles G p f = 2