| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgr2cycl.1 |
|- I = ( iEdg ` G ) |
| 2 |
|
ax-5 |
|- ( j e. dom I -> A. k j e. dom I ) |
| 3 |
|
alral |
|- ( A. k j e. dom I -> A. k e. dom I j e. dom I ) |
| 4 |
2 3
|
syl |
|- ( j e. dom I -> A. k e. dom I j e. dom I ) |
| 5 |
|
r19.29 |
|- ( ( A. k e. dom I j e. dom I /\ E. k e. dom I ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. k e. dom I ( j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) ) |
| 6 |
4 5
|
sylan |
|- ( ( j e. dom I /\ E. k e. dom I ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. k e. dom I ( j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) ) |
| 7 |
|
eqid |
|- <" j k "> = <" j k "> |
| 8 |
|
simp1 |
|- ( ( G e. UMGraph /\ j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> G e. UMGraph ) |
| 9 |
|
simp2 |
|- ( ( G e. UMGraph /\ j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> j e. dom I ) |
| 10 |
|
simp3r |
|- ( ( G e. UMGraph /\ j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> j =/= k ) |
| 11 |
|
simp3l |
|- ( ( G e. UMGraph /\ j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> ( I ` j ) = ( I ` k ) ) |
| 12 |
7 1 8 9 10 11
|
umgr2cycllem |
|- ( ( G e. UMGraph /\ j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. p <" j k "> ( Cycles ` G ) p ) |
| 13 |
|
s2len |
|- ( # ` <" j k "> ) = 2 |
| 14 |
13
|
ax-gen |
|- A. p ( # ` <" j k "> ) = 2 |
| 15 |
|
19.29r |
|- ( ( E. p <" j k "> ( Cycles ` G ) p /\ A. p ( # ` <" j k "> ) = 2 ) -> E. p ( <" j k "> ( Cycles ` G ) p /\ ( # ` <" j k "> ) = 2 ) ) |
| 16 |
|
s2cli |
|- <" j k "> e. Word _V |
| 17 |
|
breq1 |
|- ( f = <" j k "> -> ( f ( Cycles ` G ) p <-> <" j k "> ( Cycles ` G ) p ) ) |
| 18 |
|
fveqeq2 |
|- ( f = <" j k "> -> ( ( # ` f ) = 2 <-> ( # ` <" j k "> ) = 2 ) ) |
| 19 |
17 18
|
anbi12d |
|- ( f = <" j k "> -> ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) <-> ( <" j k "> ( Cycles ` G ) p /\ ( # ` <" j k "> ) = 2 ) ) ) |
| 20 |
19
|
rspcev |
|- ( ( <" j k "> e. Word _V /\ ( <" j k "> ( Cycles ` G ) p /\ ( # ` <" j k "> ) = 2 ) ) -> E. f e. Word _V ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 21 |
16 20
|
mpan |
|- ( ( <" j k "> ( Cycles ` G ) p /\ ( # ` <" j k "> ) = 2 ) -> E. f e. Word _V ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 22 |
|
rexex |
|- ( E. f e. Word _V ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) -> E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 23 |
21 22
|
syl |
|- ( ( <" j k "> ( Cycles ` G ) p /\ ( # ` <" j k "> ) = 2 ) -> E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 24 |
23
|
eximi |
|- ( E. p ( <" j k "> ( Cycles ` G ) p /\ ( # ` <" j k "> ) = 2 ) -> E. p E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 25 |
|
excomim |
|- ( E. p E. f ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 26 |
15 24 25
|
3syl |
|- ( ( E. p <" j k "> ( Cycles ` G ) p /\ A. p ( # ` <" j k "> ) = 2 ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 27 |
12 14 26
|
sylancl |
|- ( ( G e. UMGraph /\ j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |
| 28 |
27
|
3expib |
|- ( G e. UMGraph -> ( ( j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) ) |
| 29 |
28
|
rexlimdvw |
|- ( G e. UMGraph -> ( E. k e. dom I ( j e. dom I /\ ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) ) |
| 30 |
6 29
|
syl5 |
|- ( G e. UMGraph -> ( ( j e. dom I /\ E. k e. dom I ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) ) |
| 31 |
30
|
expd |
|- ( G e. UMGraph -> ( j e. dom I -> ( E. k e. dom I ( ( I ` j ) = ( I ` k ) /\ j =/= k ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) ) ) |
| 32 |
31
|
rexlimdv |
|- ( G e. UMGraph -> ( E. j e. dom I E. k e. dom I ( ( I ` j ) = ( I ` k ) /\ j =/= k ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) ) |
| 33 |
32
|
imp |
|- ( ( G e. UMGraph /\ E. j e. dom I E. k e. dom I ( ( I ` j ) = ( I ` k ) /\ j =/= k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 2 ) ) |