Step |
Hyp |
Ref |
Expression |
1 |
|
umgr2cycl.1 |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
ax-5 |
⊢ ( 𝑗 ∈ dom 𝐼 → ∀ 𝑘 𝑗 ∈ dom 𝐼 ) |
3 |
|
alral |
⊢ ( ∀ 𝑘 𝑗 ∈ dom 𝐼 → ∀ 𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼 ) |
4 |
2 3
|
syl |
⊢ ( 𝑗 ∈ dom 𝐼 → ∀ 𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼 ) |
5 |
|
r19.29 |
⊢ ( ( ∀ 𝑘 ∈ dom 𝐼 𝑗 ∈ dom 𝐼 ∧ ∃ 𝑘 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑘 ∈ dom 𝐼 ( 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑗 ∈ dom 𝐼 ∧ ∃ 𝑘 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑘 ∈ dom 𝐼 ( 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) ) |
7 |
|
eqid |
⊢ 〈“ 𝑗 𝑘 ”〉 = 〈“ 𝑗 𝑘 ”〉 |
8 |
|
simp1 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → 𝐺 ∈ UMGraph ) |
9 |
|
simp2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → 𝑗 ∈ dom 𝐼 ) |
10 |
|
simp3r |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → 𝑗 ≠ 𝑘 ) |
11 |
|
simp3l |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ) |
12 |
7 1 8 9 10 11
|
umgr2cycllem |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑝 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ) |
13 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 |
14 |
13
|
ax-gen |
⊢ ∀ 𝑝 ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 |
15 |
|
19.29r |
⊢ ( ( ∃ 𝑝 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ∀ 𝑝 ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) → ∃ 𝑝 ( 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) ) |
16 |
|
s2cli |
⊢ 〈“ 𝑗 𝑘 ”〉 ∈ Word V |
17 |
|
breq1 |
⊢ ( 𝑓 = 〈“ 𝑗 𝑘 ”〉 → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ↔ 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ) ) |
18 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ 𝑗 𝑘 ”〉 → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) ) |
19 |
17 18
|
anbi12d |
⊢ ( 𝑓 = 〈“ 𝑗 𝑘 ”〉 → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) ) ) |
20 |
19
|
rspcev |
⊢ ( ( 〈“ 𝑗 𝑘 ”〉 ∈ Word V ∧ ( 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) ) → ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
21 |
16 20
|
mpan |
⊢ ( ( 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) → ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
22 |
|
rexex |
⊢ ( ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
23 |
21 22
|
syl |
⊢ ( ( 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
24 |
23
|
eximi |
⊢ ( ∃ 𝑝 ( 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) → ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
25 |
|
excomim |
⊢ ( ∃ 𝑝 ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
26 |
15 24 25
|
3syl |
⊢ ( ( ∃ 𝑝 〈“ 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ∀ 𝑝 ( ♯ ‘ 〈“ 𝑗 𝑘 ”〉 ) = 2 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
27 |
12 14 26
|
sylancl |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
28 |
27
|
3expib |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
29 |
28
|
rexlimdvw |
⊢ ( 𝐺 ∈ UMGraph → ( ∃ 𝑘 ∈ dom 𝐼 ( 𝑗 ∈ dom 𝐼 ∧ ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
30 |
6 29
|
syl5 |
⊢ ( 𝐺 ∈ UMGraph → ( ( 𝑗 ∈ dom 𝐼 ∧ ∃ 𝑘 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
31 |
30
|
expd |
⊢ ( 𝐺 ∈ UMGraph → ( 𝑗 ∈ dom 𝐼 → ( ∃ 𝑘 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) ) |
32 |
31
|
rexlimdv |
⊢ ( 𝐺 ∈ UMGraph → ( ∃ 𝑗 ∈ dom 𝐼 ∃ 𝑘 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
33 |
32
|
imp |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ∃ 𝑗 ∈ dom 𝐼 ∃ 𝑘 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ∧ 𝑗 ≠ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |