Metamath Proof Explorer


Theorem 2pthd

Description: A path of length 2 from one vertex to another vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 24-Jan-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
2wlkd.v V = Vtx G
2wlkd.i I = iEdg G
2trld.n φ J K
Assertion 2pthd φ F Paths G P

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 2wlkd.v V = Vtx G
7 2wlkd.i I = iEdg G
8 2trld.n φ J K
9 s3cli ⟨“ ABC ”⟩ Word V
10 1 9 eqeltri P Word V
11 10 a1i φ P Word V
12 2 fveq2i F = ⟨“ JK ”⟩
13 s2len ⟨“ JK ”⟩ = 2
14 12 13 eqtri F = 2
15 3m1e2 3 1 = 2
16 1 fveq2i P = ⟨“ ABC ”⟩
17 s3len ⟨“ ABC ”⟩ = 3
18 16 17 eqtr2i 3 = P
19 18 oveq1i 3 1 = P 1
20 14 15 19 3eqtr2i F = P 1
21 1 2 3 4 2pthdlem1 φ k 0 ..^ P j 1 ..^ F k j P k P j
22 eqid F = F
23 1 2 3 4 5 6 7 8 2trld φ F Trails G P
24 11 20 21 22 23 pthd φ F Paths G P