Metamath Proof Explorer


Theorem 2spthd

Description: A simple path of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 24-Jan-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
2wlkd.v V = Vtx G
2wlkd.i I = iEdg G
2trld.n φ J K
2spthd.n φ A C
Assertion 2spthd φ F SPaths G P

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 2wlkd.v V = Vtx G
7 2wlkd.i I = iEdg G
8 2trld.n φ J K
9 2spthd.n φ A C
10 1 2 3 4 5 6 7 8 2trld φ F Trails G P
11 3anan32 A B A C B C A B B C A C
12 4 9 11 sylanbrc φ A B A C B C
13 funcnvs3 A V B V C V A B A C B C Fun ⟨“ ABC ”⟩ -1
14 3 12 13 syl2anc φ Fun ⟨“ ABC ”⟩ -1
15 1 a1i φ P = ⟨“ ABC ”⟩
16 15 cnveqd φ P -1 = ⟨“ ABC ”⟩ -1
17 16 funeqd φ Fun P -1 Fun ⟨“ ABC ”⟩ -1
18 14 17 mpbird φ Fun P -1
19 isspth F SPaths G P F Trails G P Fun P -1
20 10 18 19 sylanbrc φ F SPaths G P