| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2wlkd.p |
|- P = <" A B C "> |
| 2 |
|
2wlkd.f |
|- F = <" J K "> |
| 3 |
|
2wlkd.s |
|- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
| 4 |
|
2wlkd.n |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
| 5 |
|
2wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
| 6 |
|
2wlkd.v |
|- V = ( Vtx ` G ) |
| 7 |
|
2wlkd.i |
|- I = ( iEdg ` G ) |
| 8 |
|
2trld.n |
|- ( ph -> J =/= K ) |
| 9 |
|
2spthd.n |
|- ( ph -> A =/= C ) |
| 10 |
1 2 3 4 5 6 7 8
|
2trld |
|- ( ph -> F ( Trails ` G ) P ) |
| 11 |
|
3anan32 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) <-> ( ( A =/= B /\ B =/= C ) /\ A =/= C ) ) |
| 12 |
4 9 11
|
sylanbrc |
|- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
| 13 |
|
funcnvs3 |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> Fun `' <" A B C "> ) |
| 14 |
3 12 13
|
syl2anc |
|- ( ph -> Fun `' <" A B C "> ) |
| 15 |
1
|
a1i |
|- ( ph -> P = <" A B C "> ) |
| 16 |
15
|
cnveqd |
|- ( ph -> `' P = `' <" A B C "> ) |
| 17 |
16
|
funeqd |
|- ( ph -> ( Fun `' P <-> Fun `' <" A B C "> ) ) |
| 18 |
14 17
|
mpbird |
|- ( ph -> Fun `' P ) |
| 19 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
| 20 |
10 18 19
|
sylanbrc |
|- ( ph -> F ( SPaths ` G ) P ) |