Metamath Proof Explorer


Theorem 2pthond

Description: A simple path of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 24-Jan-2021) (Proof shortened by AV, 30-Jan-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
2wlkd.v V=VtxG
2wlkd.i I=iEdgG
2trld.n φJK
2spthd.n φAC
Assertion 2pthond φFASPathsOnGCP

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 2wlkd.v V=VtxG
7 2wlkd.i I=iEdgG
8 2trld.n φJK
9 2spthd.n φAC
10 1 2 3 4 5 6 7 8 2trlond φFATrailsOnGCP
11 1 2 3 4 5 6 7 8 9 2spthd φFSPathsGP
12 3simpb AVBVCVAVCV
13 3 12 syl φAVCV
14 s2cli ⟨“JK”⟩WordV
15 2 14 eqeltri FWordV
16 s3cli ⟨“ABC”⟩WordV
17 1 16 eqeltri PWordV
18 15 17 pm3.2i FWordVPWordV
19 6 isspthson AVCVFWordVPWordVFASPathsOnGCPFATrailsOnGCPFSPathsGP
20 13 18 19 sylancl φFASPathsOnGCPFATrailsOnGCPFSPathsGP
21 10 11 20 mpbir2and φFASPathsOnGCP