Metamath Proof Explorer


Theorem 2pthond

Description: A simple path of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 24-Jan-2021) (Proof shortened by AV, 30-Jan-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
2wlkd.v V = Vtx G
2wlkd.i I = iEdg G
2trld.n φ J K
2spthd.n φ A C
Assertion 2pthond φ F A SPathsOn G C P

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 2wlkd.v V = Vtx G
7 2wlkd.i I = iEdg G
8 2trld.n φ J K
9 2spthd.n φ A C
10 1 2 3 4 5 6 7 8 2trlond φ F A TrailsOn G C P
11 1 2 3 4 5 6 7 8 9 2spthd φ F SPaths G P
12 3simpb A V B V C V A V C V
13 3 12 syl φ A V C V
14 s2cli ⟨“ JK ”⟩ Word V
15 2 14 eqeltri F Word V
16 s3cli ⟨“ ABC ”⟩ Word V
17 1 16 eqeltri P Word V
18 15 17 pm3.2i F Word V P Word V
19 6 isspthson A V C V F Word V P Word V F A SPathsOn G C P F A TrailsOn G C P F SPaths G P
20 13 18 19 sylancl φ F A SPathsOn G C P F A TrailsOn G C P F SPaths G P
21 10 11 20 mpbir2and φ F A SPathsOn G C P