Metamath Proof Explorer


Theorem isspthson

Description: Properties of a pair of functions to be a simple path between two given vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 16-Jan-2021) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypothesis pthsonfval.v V=VtxG
Assertion isspthson AVBVFUPZFASPathsOnGBPFATrailsOnGBPFSPathsGP

Proof

Step Hyp Ref Expression
1 pthsonfval.v V=VtxG
2 1 spthson AVBVASPathsOnGB=fp|fATrailsOnGBpfSPathsGp
3 2 breqd AVBVFASPathsOnGBPFfp|fATrailsOnGBpfSPathsGpP
4 breq12 f=Fp=PfATrailsOnGBpFATrailsOnGBP
5 breq12 f=Fp=PfSPathsGpFSPathsGP
6 4 5 anbi12d f=Fp=PfATrailsOnGBpfSPathsGpFATrailsOnGBPFSPathsGP
7 eqid fp|fATrailsOnGBpfSPathsGp=fp|fATrailsOnGBpfSPathsGp
8 6 7 brabga FUPZFfp|fATrailsOnGBpfSPathsGpPFATrailsOnGBPFSPathsGP
9 3 8 sylan9bb AVBVFUPZFASPathsOnGBPFATrailsOnGBPFSPathsGP