Step |
Hyp |
Ref |
Expression |
1 |
|
2pthon3v.v |
|
2 |
|
2pthon3v.e |
|
3 |
|
edgval |
|
4 |
2 3
|
eqtri |
|
5 |
4
|
eleq2i |
|
6 |
|
eqid |
|
7 |
1 6
|
uhgrf |
|
8 |
7
|
ffnd |
|
9 |
|
fvelrnb |
|
10 |
8 9
|
syl |
|
11 |
5 10
|
syl5bb |
|
12 |
4
|
eleq2i |
|
13 |
|
fvelrnb |
|
14 |
8 13
|
syl |
|
15 |
12 14
|
syl5bb |
|
16 |
11 15
|
anbi12d |
|
17 |
16
|
adantr |
|
18 |
17
|
adantr |
|
19 |
|
reeanv |
|
20 |
18 19
|
bitr4di |
|
21 |
|
df-s2 |
|
22 |
21
|
ovexi |
|
23 |
|
df-s3 |
|
24 |
23
|
ovexi |
|
25 |
22 24
|
pm3.2i |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
simp-4r |
|
29 |
|
3simpb |
|
30 |
29
|
ad3antlr |
|
31 |
|
eqimss2 |
|
32 |
|
eqimss2 |
|
33 |
31 32
|
anim12i |
|
34 |
33
|
adantl |
|
35 |
|
fveqeq2 |
|
36 |
35
|
anbi1d |
|
37 |
|
eqtr2 |
|
38 |
|
3simpa |
|
39 |
|
3simpc |
|
40 |
|
preq12bg |
|
41 |
38 39 40
|
syl2anc |
|
42 |
|
eqneqall |
|
43 |
42
|
com12 |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
com12 |
|
46 |
45
|
adantr |
|
47 |
|
eqneqall |
|
48 |
47
|
com12 |
|
49 |
48
|
3ad2ant2 |
|
50 |
49
|
com12 |
|
51 |
50
|
adantr |
|
52 |
46 51
|
jaoi |
|
53 |
41 52
|
syl6bi |
|
54 |
53
|
com23 |
|
55 |
54
|
adantl |
|
56 |
55
|
imp |
|
57 |
56
|
com12 |
|
58 |
37 57
|
syl |
|
59 |
36 58
|
syl6bi |
|
60 |
59
|
com23 |
|
61 |
|
2a1 |
|
62 |
60 61
|
pm2.61ine |
|
63 |
62
|
adantr |
|
64 |
63
|
imp |
|
65 |
|
simplr2 |
|
66 |
65
|
adantr |
|
67 |
26 27 28 30 34 1 6 64 66
|
2pthond |
|
68 |
|
s2len |
|
69 |
67 68
|
jctir |
|
70 |
|
breq12 |
|
71 |
|
fveqeq2 |
|
72 |
71
|
adantr |
|
73 |
70 72
|
anbi12d |
|
74 |
73
|
spc2egv |
|
75 |
25 69 74
|
mpsyl |
|
76 |
75
|
ex |
|
77 |
76
|
rexlimdvva |
|
78 |
20 77
|
sylbid |
|
79 |
78
|
3impia |
|