Description: Lemma for umgr2adedgwlk , umgr2adedgspth , etc. (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 29-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | umgr2adedgwlk.e | |
|
Assertion | umgr2adedgwlklem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2adedgwlk.e | |
|
2 | 1 | umgredgne | |
3 | 2 | ex | |
4 | 1 | umgredgne | |
5 | 4 | ex | |
6 | 3 5 | anim12d | |
7 | 6 | 3impib | |
8 | eqid | |
|
9 | 8 1 | umgrpredgv | |
10 | 9 | simpld | |
11 | 10 | 3adant3 | |
12 | 8 1 | umgrpredgv | |
13 | 12 | simpld | |
14 | 13 | 3adant2 | |
15 | 12 | simprd | |
16 | 15 | 3adant2 | |
17 | 11 14 16 | 3jca | |
18 | 7 17 | jca | |