Metamath Proof Explorer


Theorem umgr2adedgwlklem

Description: Lemma for umgr2adedgwlk , umgr2adedgspth , etc. (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 29-Jan-2021)

Ref Expression
Hypothesis umgr2adedgwlk.e E=EdgG
Assertion umgr2adedgwlklem GUMGraphABEBCEABBCAVtxGBVtxGCVtxG

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e E=EdgG
2 1 umgredgne GUMGraphABEAB
3 2 ex GUMGraphABEAB
4 1 umgredgne GUMGraphBCEBC
5 4 ex GUMGraphBCEBC
6 3 5 anim12d GUMGraphABEBCEABBC
7 6 3impib GUMGraphABEBCEABBC
8 eqid VtxG=VtxG
9 8 1 umgrpredgv GUMGraphABEAVtxGBVtxG
10 9 simpld GUMGraphABEAVtxG
11 10 3adant3 GUMGraphABEBCEAVtxG
12 8 1 umgrpredgv GUMGraphBCEBVtxGCVtxG
13 12 simpld GUMGraphBCEBVtxG
14 13 3adant2 GUMGraphABEBCEBVtxG
15 12 simprd GUMGraphBCECVtxG
16 15 3adant2 GUMGraphABEBCECVtxG
17 11 14 16 3jca GUMGraphABEBCEAVtxGBVtxGCVtxG
18 7 17 jca GUMGraphABEBCEABBCAVtxGBVtxGCVtxG