Metamath Proof Explorer


Theorem umgr2adedgwlk

Description: In a multigraph, two adjacent edges form a walk of length 2. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 29-Jan-2021)

Ref Expression
Hypotheses umgr2adedgwlk.e E = Edg G
umgr2adedgwlk.i I = iEdg G
umgr2adedgwlk.f F = ⟨“ JK ”⟩
umgr2adedgwlk.p P = ⟨“ ABC ”⟩
umgr2adedgwlk.g φ G UMGraph
umgr2adedgwlk.a φ A B E B C E
umgr2adedgwlk.j φ I J = A B
umgr2adedgwlk.k φ I K = B C
Assertion umgr2adedgwlk φ F Walks G P F = 2 A = P 0 B = P 1 C = P 2

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e E = Edg G
2 umgr2adedgwlk.i I = iEdg G
3 umgr2adedgwlk.f F = ⟨“ JK ”⟩
4 umgr2adedgwlk.p P = ⟨“ ABC ”⟩
5 umgr2adedgwlk.g φ G UMGraph
6 umgr2adedgwlk.a φ A B E B C E
7 umgr2adedgwlk.j φ I J = A B
8 umgr2adedgwlk.k φ I K = B C
9 3anass G UMGraph A B E B C E G UMGraph A B E B C E
10 5 6 9 sylanbrc φ G UMGraph A B E B C E
11 1 umgr2adedgwlklem G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G
12 10 11 syl φ A B B C A Vtx G B Vtx G C Vtx G
13 12 simprd φ A Vtx G B Vtx G C Vtx G
14 12 simpld φ A B B C
15 ssid A B A B
16 15 7 sseqtrrid φ A B I J
17 ssid B C B C
18 17 8 sseqtrrid φ B C I K
19 16 18 jca φ A B I J B C I K
20 eqid Vtx G = Vtx G
21 4 3 13 14 19 20 2 2wlkd φ F Walks G P
22 3 fveq2i F = ⟨“ JK ”⟩
23 s2len ⟨“ JK ”⟩ = 2
24 22 23 eqtri F = 2
25 24 a1i φ F = 2
26 s3fv0 A Vtx G ⟨“ ABC ”⟩ 0 = A
27 s3fv1 B Vtx G ⟨“ ABC ”⟩ 1 = B
28 s3fv2 C Vtx G ⟨“ ABC ”⟩ 2 = C
29 26 27 28 3anim123i A Vtx G B Vtx G C Vtx G ⟨“ ABC ”⟩ 0 = A ⟨“ ABC ”⟩ 1 = B ⟨“ ABC ”⟩ 2 = C
30 13 29 syl φ ⟨“ ABC ”⟩ 0 = A ⟨“ ABC ”⟩ 1 = B ⟨“ ABC ”⟩ 2 = C
31 4 fveq1i P 0 = ⟨“ ABC ”⟩ 0
32 31 eqeq2i A = P 0 A = ⟨“ ABC ”⟩ 0
33 eqcom A = ⟨“ ABC ”⟩ 0 ⟨“ ABC ”⟩ 0 = A
34 32 33 bitri A = P 0 ⟨“ ABC ”⟩ 0 = A
35 4 fveq1i P 1 = ⟨“ ABC ”⟩ 1
36 35 eqeq2i B = P 1 B = ⟨“ ABC ”⟩ 1
37 eqcom B = ⟨“ ABC ”⟩ 1 ⟨“ ABC ”⟩ 1 = B
38 36 37 bitri B = P 1 ⟨“ ABC ”⟩ 1 = B
39 4 fveq1i P 2 = ⟨“ ABC ”⟩ 2
40 39 eqeq2i C = P 2 C = ⟨“ ABC ”⟩ 2
41 eqcom C = ⟨“ ABC ”⟩ 2 ⟨“ ABC ”⟩ 2 = C
42 40 41 bitri C = P 2 ⟨“ ABC ”⟩ 2 = C
43 34 38 42 3anbi123i A = P 0 B = P 1 C = P 2 ⟨“ ABC ”⟩ 0 = A ⟨“ ABC ”⟩ 1 = B ⟨“ ABC ”⟩ 2 = C
44 30 43 sylibr φ A = P 0 B = P 1 C = P 2
45 21 25 44 3jca φ F Walks G P F = 2 A = P 0 B = P 1 C = P 2