Metamath Proof Explorer


Theorem umgr2adedgwlkon

Description: In a multigraph, two adjacent edges form a walk between two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021)

Ref Expression
Hypotheses umgr2adedgwlk.e E = Edg G
umgr2adedgwlk.i I = iEdg G
umgr2adedgwlk.f F = ⟨“ JK ”⟩
umgr2adedgwlk.p P = ⟨“ ABC ”⟩
umgr2adedgwlk.g φ G UMGraph
umgr2adedgwlk.a φ A B E B C E
umgr2adedgwlk.j φ I J = A B
umgr2adedgwlk.k φ I K = B C
Assertion umgr2adedgwlkon φ F A WalksOn G C P

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e E = Edg G
2 umgr2adedgwlk.i I = iEdg G
3 umgr2adedgwlk.f F = ⟨“ JK ”⟩
4 umgr2adedgwlk.p P = ⟨“ ABC ”⟩
5 umgr2adedgwlk.g φ G UMGraph
6 umgr2adedgwlk.a φ A B E B C E
7 umgr2adedgwlk.j φ I J = A B
8 umgr2adedgwlk.k φ I K = B C
9 3anass G UMGraph A B E B C E G UMGraph A B E B C E
10 5 6 9 sylanbrc φ G UMGraph A B E B C E
11 1 umgr2adedgwlklem G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G
12 10 11 syl φ A B B C A Vtx G B Vtx G C Vtx G
13 12 simprd φ A Vtx G B Vtx G C Vtx G
14 12 simpld φ A B B C
15 ssid A B A B
16 15 7 sseqtrrid φ A B I J
17 ssid B C B C
18 17 8 sseqtrrid φ B C I K
19 16 18 jca φ A B I J B C I K
20 eqid Vtx G = Vtx G
21 4 3 13 14 19 20 2 2wlkond φ F A WalksOn G C P