Metamath Proof Explorer


Theorem 2wlkond

Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 30-Jan-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
2wlkd.e φABIJBCIK
2wlkd.v V=VtxG
2wlkd.i I=iEdgG
Assertion 2wlkond φFAWalksOnGCP

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 2wlkd.e φABIJBCIK
6 2wlkd.v V=VtxG
7 2wlkd.i I=iEdgG
8 1 2 3 4 5 6 7 2wlkd φFWalksGP
9 3 simp1d φAV
10 1 fveq1i P0=⟨“ABC”⟩0
11 s3fv0 AV⟨“ABC”⟩0=A
12 10 11 eqtrid AVP0=A
13 9 12 syl φP0=A
14 2 fveq2i F=⟨“JK”⟩
15 s2len ⟨“JK”⟩=2
16 14 15 eqtri F=2
17 1 16 fveq12i PF=⟨“ABC”⟩2
18 3 simp3d φCV
19 s3fv2 CV⟨“ABC”⟩2=C
20 18 19 syl φ⟨“ABC”⟩2=C
21 17 20 eqtrid φPF=C
22 3simpb AVBVCVAVCV
23 3 22 syl φAVCV
24 s2cli ⟨“JK”⟩WordV
25 2 24 eqeltri FWordV
26 s3cli ⟨“ABC”⟩WordV
27 1 26 eqeltri PWordV
28 25 27 pm3.2i FWordVPWordV
29 6 iswlkon AVCVFWordVPWordVFAWalksOnGCPFWalksGPP0=APF=C
30 23 28 29 sylancl φFAWalksOnGCPFWalksGPP0=APF=C
31 8 13 21 30 mpbir3and φFAWalksOnGCP