Metamath Proof Explorer


Theorem 2wlkond

Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 30-Jan-2021) (Revised by AV, 24-Mar-2021)

Ref Expression
Hypotheses 2wlkd.p P = ⟨“ ABC ”⟩
2wlkd.f F = ⟨“ JK ”⟩
2wlkd.s φ A V B V C V
2wlkd.n φ A B B C
2wlkd.e φ A B I J B C I K
2wlkd.v V = Vtx G
2wlkd.i I = iEdg G
Assertion 2wlkond φ F A WalksOn G C P

Proof

Step Hyp Ref Expression
1 2wlkd.p P = ⟨“ ABC ”⟩
2 2wlkd.f F = ⟨“ JK ”⟩
3 2wlkd.s φ A V B V C V
4 2wlkd.n φ A B B C
5 2wlkd.e φ A B I J B C I K
6 2wlkd.v V = Vtx G
7 2wlkd.i I = iEdg G
8 1 2 3 4 5 6 7 2wlkd φ F Walks G P
9 3 simp1d φ A V
10 1 fveq1i P 0 = ⟨“ ABC ”⟩ 0
11 s3fv0 A V ⟨“ ABC ”⟩ 0 = A
12 10 11 eqtrid A V P 0 = A
13 9 12 syl φ P 0 = A
14 2 fveq2i F = ⟨“ JK ”⟩
15 s2len ⟨“ JK ”⟩ = 2
16 14 15 eqtri F = 2
17 1 16 fveq12i P F = ⟨“ ABC ”⟩ 2
18 3 simp3d φ C V
19 s3fv2 C V ⟨“ ABC ”⟩ 2 = C
20 18 19 syl φ ⟨“ ABC ”⟩ 2 = C
21 17 20 eqtrid φ P F = C
22 3simpb A V B V C V A V C V
23 3 22 syl φ A V C V
24 s2cli ⟨“ JK ”⟩ Word V
25 2 24 eqeltri F Word V
26 s3cli ⟨“ ABC ”⟩ Word V
27 1 26 eqeltri P Word V
28 25 27 pm3.2i F Word V P Word V
29 6 iswlkon A V C V F Word V P Word V F A WalksOn G C P F Walks G P P 0 = A P F = C
30 23 28 29 sylancl φ F A WalksOn G C P F Walks G P P 0 = A P F = C
31 8 13 21 30 mpbir3and φ F A WalksOn G C P