| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgr2adedgwlk.e |
|
| 2 |
|
umgr2adedgwlk.i |
|
| 3 |
|
umgr2adedgwlk.f |
|
| 4 |
|
umgr2adedgwlk.p |
|
| 5 |
|
umgr2adedgwlk.g |
|
| 6 |
|
umgr2adedgwlk.a |
|
| 7 |
|
umgr2adedgwlk.j |
|
| 8 |
|
umgr2adedgwlk.k |
|
| 9 |
|
umgr2adedgspth.n |
|
| 10 |
|
3anass |
|
| 11 |
5 6 10
|
sylanbrc |
|
| 12 |
1
|
umgr2adedgwlklem |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
simprd |
|
| 15 |
13
|
simpld |
|
| 16 |
|
ssid |
|
| 17 |
16 7
|
sseqtrrid |
|
| 18 |
|
ssid |
|
| 19 |
18 8
|
sseqtrrid |
|
| 20 |
17 19
|
jca |
|
| 21 |
|
eqid |
|
| 22 |
|
fveq2 |
|
| 23 |
22
|
eqcoms |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
|
eqtr2 |
|
| 26 |
25
|
ex |
|
| 27 |
24 26
|
biimtrdi |
|
| 28 |
27
|
com13 |
|
| 29 |
7 8 28
|
sylc |
|
| 30 |
|
eqcom |
|
| 31 |
|
prcom |
|
| 32 |
31
|
eqeq2i |
|
| 33 |
30 32
|
bitri |
|
| 34 |
21 1
|
umgrpredgv |
|
| 35 |
34
|
simpld |
|
| 36 |
35
|
ex |
|
| 37 |
21 1
|
umgrpredgv |
|
| 38 |
37
|
simprd |
|
| 39 |
38
|
ex |
|
| 40 |
36 39
|
anim12d |
|
| 41 |
5 6 40
|
sylc |
|
| 42 |
|
preqr1g |
|
| 43 |
41 42
|
syl |
|
| 44 |
|
eqneqall |
|
| 45 |
43 9 44
|
syl6ci |
|
| 46 |
33 45
|
biimtrid |
|
| 47 |
29 46
|
syld |
|
| 48 |
|
neqne |
|
| 49 |
47 48
|
pm2.61d1 |
|
| 50 |
4 3 14 15 20 21 2 49 9
|
2spthd |
|