Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | umgr2wlk.e | |
|
Assertion | umgr2wlk | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2wlk.e | |
|
2 | umgruhgr | |
|
3 | 1 | eleq2i | |
4 | eqid | |
|
5 | 4 | uhgredgiedgb | |
6 | 3 5 | bitrid | |
7 | 2 6 | syl | |
8 | 7 | biimpd | |
9 | 8 | a1d | |
10 | 9 | 3imp | |
11 | 1 | eleq2i | |
12 | 4 | uhgredgiedgb | |
13 | 11 12 | bitrid | |
14 | 2 13 | syl | |
15 | 14 | biimpd | |
16 | 15 | a1dd | |
17 | 16 | 3imp | |
18 | s2cli | |
|
19 | s3cli | |
|
20 | 18 19 | pm3.2i | |
21 | eqid | |
|
22 | eqid | |
|
23 | simpl1 | |
|
24 | 3simpc | |
|
25 | 24 | adantr | |
26 | simpl | |
|
27 | 26 | eqcomd | |
28 | 27 | adantl | |
29 | simpr | |
|
30 | 29 | eqcomd | |
31 | 30 | adantl | |
32 | 1 4 21 22 23 25 28 31 | umgr2adedgwlk | |
33 | breq12 | |
|
34 | fveqeq2 | |
|
35 | 34 | adantr | |
36 | fveq1 | |
|
37 | 36 | eqeq2d | |
38 | fveq1 | |
|
39 | 38 | eqeq2d | |
40 | fveq1 | |
|
41 | 40 | eqeq2d | |
42 | 37 39 41 | 3anbi123d | |
43 | 42 | adantl | |
44 | 33 35 43 | 3anbi123d | |
45 | 44 | spc2egv | |
46 | 20 32 45 | mpsyl | |
47 | 46 | exp32 | |
48 | 47 | com12 | |
49 | 48 | rexlimivw | |
50 | 49 | com13 | |
51 | 50 | rexlimivw | |
52 | 51 | com12 | |
53 | 10 17 52 | mp2d | |