Metamath Proof Explorer


Theorem umgr2wlk

Description: In a multigraph, there is a walk of length 2 for each pair of adjacent edges. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021)

Ref Expression
Hypothesis umgr2wlk.e E=EdgG
Assertion umgr2wlk GUMGraphABEBCEfpfWalksGpf=2A=p0B=p1C=p2

Proof

Step Hyp Ref Expression
1 umgr2wlk.e E=EdgG
2 umgruhgr GUMGraphGUHGraph
3 1 eleq2i BCEBCEdgG
4 eqid iEdgG=iEdgG
5 4 uhgredgiedgb GUHGraphBCEdgGidomiEdgGBC=iEdgGi
6 3 5 bitrid GUHGraphBCEidomiEdgGBC=iEdgGi
7 2 6 syl GUMGraphBCEidomiEdgGBC=iEdgGi
8 7 biimpd GUMGraphBCEidomiEdgGBC=iEdgGi
9 8 a1d GUMGraphABEBCEidomiEdgGBC=iEdgGi
10 9 3imp GUMGraphABEBCEidomiEdgGBC=iEdgGi
11 1 eleq2i ABEABEdgG
12 4 uhgredgiedgb GUHGraphABEdgGjdomiEdgGAB=iEdgGj
13 11 12 bitrid GUHGraphABEjdomiEdgGAB=iEdgGj
14 2 13 syl GUMGraphABEjdomiEdgGAB=iEdgGj
15 14 biimpd GUMGraphABEjdomiEdgGAB=iEdgGj
16 15 a1dd GUMGraphABEBCEjdomiEdgGAB=iEdgGj
17 16 3imp GUMGraphABEBCEjdomiEdgGAB=iEdgGj
18 s2cli ⟨“ji”⟩WordV
19 s3cli ⟨“ABC”⟩WordV
20 18 19 pm3.2i ⟨“ji”⟩WordV⟨“ABC”⟩WordV
21 eqid ⟨“ji”⟩=⟨“ji”⟩
22 eqid ⟨“ABC”⟩=⟨“ABC”⟩
23 simpl1 GUMGraphABEBCEAB=iEdgGjBC=iEdgGiGUMGraph
24 3simpc GUMGraphABEBCEABEBCE
25 24 adantr GUMGraphABEBCEAB=iEdgGjBC=iEdgGiABEBCE
26 simpl AB=iEdgGjBC=iEdgGiAB=iEdgGj
27 26 eqcomd AB=iEdgGjBC=iEdgGiiEdgGj=AB
28 27 adantl GUMGraphABEBCEAB=iEdgGjBC=iEdgGiiEdgGj=AB
29 simpr AB=iEdgGjBC=iEdgGiBC=iEdgGi
30 29 eqcomd AB=iEdgGjBC=iEdgGiiEdgGi=BC
31 30 adantl GUMGraphABEBCEAB=iEdgGjBC=iEdgGiiEdgGi=BC
32 1 4 21 22 23 25 28 31 umgr2adedgwlk GUMGraphABEBCEAB=iEdgGjBC=iEdgGi⟨“ji”⟩WalksG⟨“ABC”⟩⟨“ji”⟩=2A=⟨“ABC”⟩0B=⟨“ABC”⟩1C=⟨“ABC”⟩2
33 breq12 f=⟨“ji”⟩p=⟨“ABC”⟩fWalksGp⟨“ji”⟩WalksG⟨“ABC”⟩
34 fveqeq2 f=⟨“ji”⟩f=2⟨“ji”⟩=2
35 34 adantr f=⟨“ji”⟩p=⟨“ABC”⟩f=2⟨“ji”⟩=2
36 fveq1 p=⟨“ABC”⟩p0=⟨“ABC”⟩0
37 36 eqeq2d p=⟨“ABC”⟩A=p0A=⟨“ABC”⟩0
38 fveq1 p=⟨“ABC”⟩p1=⟨“ABC”⟩1
39 38 eqeq2d p=⟨“ABC”⟩B=p1B=⟨“ABC”⟩1
40 fveq1 p=⟨“ABC”⟩p2=⟨“ABC”⟩2
41 40 eqeq2d p=⟨“ABC”⟩C=p2C=⟨“ABC”⟩2
42 37 39 41 3anbi123d p=⟨“ABC”⟩A=p0B=p1C=p2A=⟨“ABC”⟩0B=⟨“ABC”⟩1C=⟨“ABC”⟩2
43 42 adantl f=⟨“ji”⟩p=⟨“ABC”⟩A=p0B=p1C=p2A=⟨“ABC”⟩0B=⟨“ABC”⟩1C=⟨“ABC”⟩2
44 33 35 43 3anbi123d f=⟨“ji”⟩p=⟨“ABC”⟩fWalksGpf=2A=p0B=p1C=p2⟨“ji”⟩WalksG⟨“ABC”⟩⟨“ji”⟩=2A=⟨“ABC”⟩0B=⟨“ABC”⟩1C=⟨“ABC”⟩2
45 44 spc2egv ⟨“ji”⟩WordV⟨“ABC”⟩WordV⟨“ji”⟩WalksG⟨“ABC”⟩⟨“ji”⟩=2A=⟨“ABC”⟩0B=⟨“ABC”⟩1C=⟨“ABC”⟩2fpfWalksGpf=2A=p0B=p1C=p2
46 20 32 45 mpsyl GUMGraphABEBCEAB=iEdgGjBC=iEdgGifpfWalksGpf=2A=p0B=p1C=p2
47 46 exp32 GUMGraphABEBCEAB=iEdgGjBC=iEdgGifpfWalksGpf=2A=p0B=p1C=p2
48 47 com12 AB=iEdgGjGUMGraphABEBCEBC=iEdgGifpfWalksGpf=2A=p0B=p1C=p2
49 48 rexlimivw jdomiEdgGAB=iEdgGjGUMGraphABEBCEBC=iEdgGifpfWalksGpf=2A=p0B=p1C=p2
50 49 com13 BC=iEdgGiGUMGraphABEBCEjdomiEdgGAB=iEdgGjfpfWalksGpf=2A=p0B=p1C=p2
51 50 rexlimivw idomiEdgGBC=iEdgGiGUMGraphABEBCEjdomiEdgGAB=iEdgGjfpfWalksGpf=2A=p0B=p1C=p2
52 51 com12 GUMGraphABEBCEidomiEdgGBC=iEdgGijdomiEdgGAB=iEdgGjfpfWalksGpf=2A=p0B=p1C=p2
53 10 17 52 mp2d GUMGraphABEBCEfpfWalksGpf=2A=p0B=p1C=p2