Metamath Proof Explorer


Theorem umgr2wlkon

Description: For each pair of adjacent edges in a multigraph, there is a walk of length 2 between the not common vertices of the edges. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021)

Ref Expression
Hypothesis umgr2wlk.e E=EdgG
Assertion umgr2wlkon GUMGraphABEBCEfpfAWalksOnGCp

Proof

Step Hyp Ref Expression
1 umgr2wlk.e E=EdgG
2 1 umgr2wlk GUMGraphABEBCEfpfWalksGpf=2A=p0B=p1C=p2
3 simp1 fWalksGpf=2A=p0B=p1C=p2fWalksGp
4 eqcom A=p0p0=A
5 4 biimpi A=p0p0=A
6 5 3ad2ant1 A=p0B=p1C=p2p0=A
7 6 3ad2ant3 fWalksGpf=2A=p0B=p1C=p2p0=A
8 fveq2 2=fp2=pf
9 8 eqcoms f=2p2=pf
10 9 eqeq1d f=2p2=Cpf=C
11 10 biimpcd p2=Cf=2pf=C
12 11 eqcoms C=p2f=2pf=C
13 12 3ad2ant3 A=p0B=p1C=p2f=2pf=C
14 13 com12 f=2A=p0B=p1C=p2pf=C
15 14 a1i fWalksGpf=2A=p0B=p1C=p2pf=C
16 15 3imp fWalksGpf=2A=p0B=p1C=p2pf=C
17 3 7 16 3jca fWalksGpf=2A=p0B=p1C=p2fWalksGpp0=Apf=C
18 17 adantl GUMGraphABEBCEfWalksGpf=2A=p0B=p1C=p2fWalksGpp0=Apf=C
19 1 umgr2adedgwlklem GUMGraphABEBCEABBCAVtxGBVtxGCVtxG
20 simprr1 GUMGraphABEBCEABBCAVtxGBVtxGCVtxGAVtxG
21 simprr3 GUMGraphABEBCEABBCAVtxGBVtxGCVtxGCVtxG
22 20 21 jca GUMGraphABEBCEABBCAVtxGBVtxGCVtxGAVtxGCVtxG
23 19 22 mpdan GUMGraphABEBCEAVtxGCVtxG
24 vex fV
25 vex pV
26 24 25 pm3.2i fVpV
27 26 a1i GUMGraphABEBCEfWalksGpf=2A=p0B=p1C=p2fVpV
28 eqid VtxG=VtxG
29 28 iswlkon AVtxGCVtxGfVpVfAWalksOnGCpfWalksGpp0=Apf=C
30 23 27 29 syl2an2r GUMGraphABEBCEfWalksGpf=2A=p0B=p1C=p2fAWalksOnGCpfWalksGpp0=Apf=C
31 18 30 mpbird GUMGraphABEBCEfWalksGpf=2A=p0B=p1C=p2fAWalksOnGCp
32 31 ex GUMGraphABEBCEfWalksGpf=2A=p0B=p1C=p2fAWalksOnGCp
33 32 2eximdv GUMGraphABEBCEfpfWalksGpf=2A=p0B=p1C=p2fpfAWalksOnGCp
34 2 33 mpd GUMGraphABEBCEfpfAWalksOnGCp