| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2wlk.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 2 | 1 | umgr2wlk | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | 
						
							| 4 |  | eqcom | ⊢ ( 𝐴  =  ( 𝑝 ‘ 0 )  ↔  ( 𝑝 ‘ 0 )  =  𝐴 ) | 
						
							| 5 | 4 | biimpi | ⊢ ( 𝐴  =  ( 𝑝 ‘ 0 )  →  ( 𝑝 ‘ 0 )  =  𝐴 ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑝 ‘ 0 )  =  𝐴 ) | 
						
							| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝 ‘ 0 )  =  𝐴 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 2  =  ( ♯ ‘ 𝑓 )  →  ( 𝑝 ‘ 2 )  =  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) | 
						
							| 9 | 8 | eqcoms | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 𝑝 ‘ 2 )  =  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( 𝑝 ‘ 2 )  =  𝐶  ↔  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) | 
						
							| 11 | 10 | biimpcd | ⊢ ( ( 𝑝 ‘ 2 )  =  𝐶  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) | 
						
							| 12 | 11 | eqcoms | ⊢ ( 𝐶  =  ( 𝑝 ‘ 2 )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) | 
						
							| 14 | 13 | com12 | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) ) | 
						
							| 16 | 15 | 3imp | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) | 
						
							| 17 | 3 7 16 | 3jca | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) | 
						
							| 19 | 1 | umgr2adedgwlklem | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) ) | 
						
							| 20 |  | simprr1 | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 21 |  | simprr3 | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 22 | 20 21 | jca | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 23 | 19 22 | mpdan | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 24 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 25 |  | vex | ⊢ 𝑝  ∈  V | 
						
							| 26 | 24 25 | pm3.2i | ⊢ ( 𝑓  ∈  V  ∧  𝑝  ∈  V ) | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑓  ∈  V  ∧  𝑝  ∈  V ) ) | 
						
							| 28 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 29 | 28 | iswlkon | ⊢ ( ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐶  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑓  ∈  V  ∧  𝑝  ∈  V ) )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝  ↔  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) ) | 
						
							| 30 | 23 27 29 | syl2an2r | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝  ↔  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )  =  𝐶 ) ) ) | 
						
							| 31 | 18 30 | mpbird | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) | 
						
							| 32 | 31 | ex | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) ) | 
						
							| 33 | 32 | 2eximdv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) ) | 
						
							| 34 | 2 33 | mpd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑝 ) |