| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2wlk.e |  |-  E = ( Edg ` G ) | 
						
							| 2 | 1 | umgr2wlk |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) | 
						
							| 3 |  | simp1 |  |-  ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( Walks ` G ) p ) | 
						
							| 4 |  | eqcom |  |-  ( A = ( p ` 0 ) <-> ( p ` 0 ) = A ) | 
						
							| 5 | 4 | biimpi |  |-  ( A = ( p ` 0 ) -> ( p ` 0 ) = A ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p ` 0 ) = A ) | 
						
							| 7 | 6 | 3ad2ant3 |  |-  ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p ` 0 ) = A ) | 
						
							| 8 |  | fveq2 |  |-  ( 2 = ( # ` f ) -> ( p ` 2 ) = ( p ` ( # ` f ) ) ) | 
						
							| 9 | 8 | eqcoms |  |-  ( ( # ` f ) = 2 -> ( p ` 2 ) = ( p ` ( # ` f ) ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( ( # ` f ) = 2 -> ( ( p ` 2 ) = C <-> ( p ` ( # ` f ) ) = C ) ) | 
						
							| 11 | 10 | biimpcd |  |-  ( ( p ` 2 ) = C -> ( ( # ` f ) = 2 -> ( p ` ( # ` f ) ) = C ) ) | 
						
							| 12 | 11 | eqcoms |  |-  ( C = ( p ` 2 ) -> ( ( # ` f ) = 2 -> ( p ` ( # ` f ) ) = C ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( ( # ` f ) = 2 -> ( p ` ( # ` f ) ) = C ) ) | 
						
							| 14 | 13 | com12 |  |-  ( ( # ` f ) = 2 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p ` ( # ` f ) ) = C ) ) | 
						
							| 15 | 14 | a1i |  |-  ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p ` ( # ` f ) ) = C ) ) ) | 
						
							| 16 | 15 | 3imp |  |-  ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p ` ( # ` f ) ) = C ) | 
						
							| 17 | 3 7 16 | 3jca |  |-  ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) | 
						
							| 19 | 1 | umgr2adedgwlklem |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 20 |  | simprr1 |  |-  ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) -> A e. ( Vtx ` G ) ) | 
						
							| 21 |  | simprr3 |  |-  ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) -> C e. ( Vtx ` G ) ) | 
						
							| 22 | 20 21 | jca |  |-  ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 23 | 19 22 | mpdan |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 24 |  | vex |  |-  f e. _V | 
						
							| 25 |  | vex |  |-  p e. _V | 
						
							| 26 | 24 25 | pm3.2i |  |-  ( f e. _V /\ p e. _V ) | 
						
							| 27 | 26 | a1i |  |-  ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f e. _V /\ p e. _V ) ) | 
						
							| 28 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 29 | 28 | iswlkon |  |-  ( ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( f e. _V /\ p e. _V ) ) -> ( f ( A ( WalksOn ` G ) C ) p <-> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) ) | 
						
							| 30 | 23 27 29 | syl2an2r |  |-  ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( A ( WalksOn ` G ) C ) p <-> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) ) | 
						
							| 31 | 18 30 | mpbird |  |-  ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> f ( A ( WalksOn ` G ) C ) p ) | 
						
							| 32 | 31 | ex |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( A ( WalksOn ` G ) C ) p ) ) | 
						
							| 33 | 32 | 2eximdv |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> E. f E. p f ( A ( WalksOn ` G ) C ) p ) ) | 
						
							| 34 | 2 33 | mpd |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. f E. p f ( A ( WalksOn ` G ) C ) p ) |