| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgr2wlk.e |
|- E = ( Edg ` G ) |
| 2 |
|
umgruhgr |
|- ( G e. UMGraph -> G e. UHGraph ) |
| 3 |
1
|
eleq2i |
|- ( { B , C } e. E <-> { B , C } e. ( Edg ` G ) ) |
| 4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 5 |
4
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( { B , C } e. ( Edg ` G ) <-> E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) ) ) |
| 6 |
3 5
|
bitrid |
|- ( G e. UHGraph -> ( { B , C } e. E <-> E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) ) ) |
| 7 |
2 6
|
syl |
|- ( G e. UMGraph -> ( { B , C } e. E <-> E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) ) ) |
| 8 |
7
|
biimpd |
|- ( G e. UMGraph -> ( { B , C } e. E -> E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) ) ) |
| 9 |
8
|
a1d |
|- ( G e. UMGraph -> ( { A , B } e. E -> ( { B , C } e. E -> E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) ) ) ) |
| 10 |
9
|
3imp |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) ) |
| 11 |
1
|
eleq2i |
|- ( { A , B } e. E <-> { A , B } e. ( Edg ` G ) ) |
| 12 |
4
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( { A , B } e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) ) ) |
| 13 |
11 12
|
bitrid |
|- ( G e. UHGraph -> ( { A , B } e. E <-> E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) ) ) |
| 14 |
2 13
|
syl |
|- ( G e. UMGraph -> ( { A , B } e. E <-> E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) ) ) |
| 15 |
14
|
biimpd |
|- ( G e. UMGraph -> ( { A , B } e. E -> E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) ) ) |
| 16 |
15
|
a1dd |
|- ( G e. UMGraph -> ( { A , B } e. E -> ( { B , C } e. E -> E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) ) ) ) |
| 17 |
16
|
3imp |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) ) |
| 18 |
|
s2cli |
|- <" j i "> e. Word _V |
| 19 |
|
s3cli |
|- <" A B C "> e. Word _V |
| 20 |
18 19
|
pm3.2i |
|- ( <" j i "> e. Word _V /\ <" A B C "> e. Word _V ) |
| 21 |
|
eqid |
|- <" j i "> = <" j i "> |
| 22 |
|
eqid |
|- <" A B C "> = <" A B C "> |
| 23 |
|
simpl1 |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) ) -> G e. UMGraph ) |
| 24 |
|
3simpc |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( { A , B } e. E /\ { B , C } e. E ) ) |
| 25 |
24
|
adantr |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) ) -> ( { A , B } e. E /\ { B , C } e. E ) ) |
| 26 |
|
simpl |
|- ( ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) -> { A , B } = ( ( iEdg ` G ) ` j ) ) |
| 27 |
26
|
eqcomd |
|- ( ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` G ) ` j ) = { A , B } ) |
| 28 |
27
|
adantl |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` G ) ` j ) = { A , B } ) |
| 29 |
|
simpr |
|- ( ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) -> { B , C } = ( ( iEdg ` G ) ` i ) ) |
| 30 |
29
|
eqcomd |
|- ( ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) -> ( ( iEdg ` G ) ` i ) = { B , C } ) |
| 31 |
30
|
adantl |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` G ) ` i ) = { B , C } ) |
| 32 |
1 4 21 22 23 25 28 31
|
umgr2adedgwlk |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) ) -> ( <" j i "> ( Walks ` G ) <" A B C "> /\ ( # ` <" j i "> ) = 2 /\ ( A = ( <" A B C "> ` 0 ) /\ B = ( <" A B C "> ` 1 ) /\ C = ( <" A B C "> ` 2 ) ) ) ) |
| 33 |
|
breq12 |
|- ( ( f = <" j i "> /\ p = <" A B C "> ) -> ( f ( Walks ` G ) p <-> <" j i "> ( Walks ` G ) <" A B C "> ) ) |
| 34 |
|
fveqeq2 |
|- ( f = <" j i "> -> ( ( # ` f ) = 2 <-> ( # ` <" j i "> ) = 2 ) ) |
| 35 |
34
|
adantr |
|- ( ( f = <" j i "> /\ p = <" A B C "> ) -> ( ( # ` f ) = 2 <-> ( # ` <" j i "> ) = 2 ) ) |
| 36 |
|
fveq1 |
|- ( p = <" A B C "> -> ( p ` 0 ) = ( <" A B C "> ` 0 ) ) |
| 37 |
36
|
eqeq2d |
|- ( p = <" A B C "> -> ( A = ( p ` 0 ) <-> A = ( <" A B C "> ` 0 ) ) ) |
| 38 |
|
fveq1 |
|- ( p = <" A B C "> -> ( p ` 1 ) = ( <" A B C "> ` 1 ) ) |
| 39 |
38
|
eqeq2d |
|- ( p = <" A B C "> -> ( B = ( p ` 1 ) <-> B = ( <" A B C "> ` 1 ) ) ) |
| 40 |
|
fveq1 |
|- ( p = <" A B C "> -> ( p ` 2 ) = ( <" A B C "> ` 2 ) ) |
| 41 |
40
|
eqeq2d |
|- ( p = <" A B C "> -> ( C = ( p ` 2 ) <-> C = ( <" A B C "> ` 2 ) ) ) |
| 42 |
37 39 41
|
3anbi123d |
|- ( p = <" A B C "> -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) <-> ( A = ( <" A B C "> ` 0 ) /\ B = ( <" A B C "> ` 1 ) /\ C = ( <" A B C "> ` 2 ) ) ) ) |
| 43 |
42
|
adantl |
|- ( ( f = <" j i "> /\ p = <" A B C "> ) -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) <-> ( A = ( <" A B C "> ` 0 ) /\ B = ( <" A B C "> ` 1 ) /\ C = ( <" A B C "> ` 2 ) ) ) ) |
| 44 |
33 35 43
|
3anbi123d |
|- ( ( f = <" j i "> /\ p = <" A B C "> ) -> ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) <-> ( <" j i "> ( Walks ` G ) <" A B C "> /\ ( # ` <" j i "> ) = 2 /\ ( A = ( <" A B C "> ` 0 ) /\ B = ( <" A B C "> ` 1 ) /\ C = ( <" A B C "> ` 2 ) ) ) ) ) |
| 45 |
44
|
spc2egv |
|- ( ( <" j i "> e. Word _V /\ <" A B C "> e. Word _V ) -> ( ( <" j i "> ( Walks ` G ) <" A B C "> /\ ( # ` <" j i "> ) = 2 /\ ( A = ( <" A B C "> ` 0 ) /\ B = ( <" A B C "> ` 1 ) /\ C = ( <" A B C "> ` 2 ) ) ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) ) |
| 46 |
20 32 45
|
mpsyl |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( { A , B } = ( ( iEdg ` G ) ` j ) /\ { B , C } = ( ( iEdg ` G ) ` i ) ) ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) |
| 47 |
46
|
exp32 |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( { A , B } = ( ( iEdg ` G ) ` j ) -> ( { B , C } = ( ( iEdg ` G ) ` i ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) ) ) |
| 48 |
47
|
com12 |
|- ( { A , B } = ( ( iEdg ` G ) ` j ) -> ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( { B , C } = ( ( iEdg ` G ) ` i ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) ) ) |
| 49 |
48
|
rexlimivw |
|- ( E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) -> ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( { B , C } = ( ( iEdg ` G ) ` i ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) ) ) |
| 50 |
49
|
com13 |
|- ( { B , C } = ( ( iEdg ` G ) ` i ) -> ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) ) ) |
| 51 |
50
|
rexlimivw |
|- ( E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) -> ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) ) ) |
| 52 |
51
|
com12 |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( E. i e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` i ) -> ( E. j e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` j ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) ) ) |
| 53 |
10 17 52
|
mp2d |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) |