| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2pthon3v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
2pthon3v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
| 4 |
2 3
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
| 5 |
4
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 6 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 7 |
1 6
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 8 |
7
|
ffnd |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 9 |
|
fvelrnb |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) ) |
| 11 |
5 10
|
bitrid |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) ) |
| 12 |
4
|
eleq2i |
⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 13 |
|
fvelrnb |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
| 14 |
8 13
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
| 15 |
12 14
|
bitrid |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
| 16 |
11 15
|
anbi12d |
⊢ ( 𝐺 ∈ UHGraph → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
| 19 |
|
reeanv |
⊢ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
| 20 |
18 19
|
bitr4di |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
| 21 |
|
df-s2 |
⊢ 〈“ 𝑖 𝑗 ”〉 = ( 〈“ 𝑖 ”〉 ++ 〈“ 𝑗 ”〉 ) |
| 22 |
21
|
ovexi |
⊢ 〈“ 𝑖 𝑗 ”〉 ∈ V |
| 23 |
|
df-s3 |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 = ( 〈“ 𝐴 𝐵 ”〉 ++ 〈“ 𝐶 ”〉 ) |
| 24 |
23
|
ovexi |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ V |
| 25 |
22 24
|
pm3.2i |
⊢ ( 〈“ 𝑖 𝑗 ”〉 ∈ V ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ V ) |
| 26 |
|
eqid |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
| 27 |
|
eqid |
⊢ 〈“ 𝑖 𝑗 ”〉 = 〈“ 𝑖 𝑗 ”〉 |
| 28 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 29 |
|
3simpb |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
| 30 |
29
|
ad3antlr |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
| 31 |
|
eqimss2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 32 |
|
eqimss2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 33 |
31 32
|
anim12i |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 35 |
|
fveqeq2 |
⊢ ( 𝑖 = 𝑗 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ) ) |
| 36 |
35
|
anbi1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
| 37 |
|
eqtr2 |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ) |
| 38 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
| 39 |
|
3simpc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 40 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) ) |
| 41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) ) |
| 42 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝑖 ≠ 𝑗 ) ) |
| 43 |
42
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 = 𝐵 → 𝑖 ≠ 𝑗 ) ) |
| 44 |
43
|
3ad2ant1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 = 𝐵 → 𝑖 ≠ 𝑗 ) ) |
| 45 |
44
|
com12 |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
| 47 |
|
eqneqall |
⊢ ( 𝐴 = 𝐶 → ( 𝐴 ≠ 𝐶 → 𝑖 ≠ 𝑗 ) ) |
| 48 |
47
|
com12 |
⊢ ( 𝐴 ≠ 𝐶 → ( 𝐴 = 𝐶 → 𝑖 ≠ 𝑗 ) ) |
| 49 |
48
|
3ad2ant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 = 𝐶 → 𝑖 ≠ 𝑗 ) ) |
| 50 |
49
|
com12 |
⊢ ( 𝐴 = 𝐶 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
| 52 |
46 51
|
jaoi |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
| 53 |
41 52
|
biimtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) ) |
| 54 |
53
|
com23 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖 ≠ 𝑗 ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖 ≠ 𝑗 ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖 ≠ 𝑗 ) ) |
| 57 |
56
|
com12 |
⊢ ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝑖 ≠ 𝑗 ) ) |
| 58 |
37 57
|
syl |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝑖 ≠ 𝑗 ) ) |
| 59 |
36 58
|
biimtrdi |
⊢ ( 𝑖 = 𝑗 → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝑖 ≠ 𝑗 ) ) ) |
| 60 |
59
|
com23 |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) ) |
| 61 |
|
2a1 |
⊢ ( 𝑖 ≠ 𝑗 → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) ) |
| 62 |
60 61
|
pm2.61ine |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 𝑖 ≠ 𝑗 ) |
| 65 |
|
simplr2 |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → 𝐴 ≠ 𝐶 ) |
| 66 |
65
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 𝐴 ≠ 𝐶 ) |
| 67 |
26 27 28 30 34 1 6 64 66
|
2pthond |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 68 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 |
| 69 |
67 68
|
jctir |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) |
| 70 |
|
breq12 |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ↔ 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
| 71 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) |
| 73 |
70 72
|
anbi12d |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) ) |
| 74 |
73
|
spc2egv |
⊢ ( ( 〈“ 𝑖 𝑗 ”〉 ∈ V ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ V ) → ( ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
| 75 |
25 69 74
|
mpsyl |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
| 76 |
75
|
ex |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
| 77 |
76
|
rexlimdvva |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
| 78 |
20 77
|
sylbid |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
| 79 |
78
|
3impia |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |