| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2pthon3v.v |
|- V = ( Vtx ` G ) |
| 2 |
|
2pthon3v.e |
|- E = ( Edg ` G ) |
| 3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 4 |
2 3
|
eqtri |
|- E = ran ( iEdg ` G ) |
| 5 |
4
|
eleq2i |
|- ( { A , B } e. E <-> { A , B } e. ran ( iEdg ` G ) ) |
| 6 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 7 |
1 6
|
uhgrf |
|- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 8 |
7
|
ffnd |
|- ( G e. UHGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
| 9 |
|
fvelrnb |
|- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( { A , B } e. ran ( iEdg ` G ) <-> E. i e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` i ) = { A , B } ) ) |
| 10 |
8 9
|
syl |
|- ( G e. UHGraph -> ( { A , B } e. ran ( iEdg ` G ) <-> E. i e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` i ) = { A , B } ) ) |
| 11 |
5 10
|
bitrid |
|- ( G e. UHGraph -> ( { A , B } e. E <-> E. i e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` i ) = { A , B } ) ) |
| 12 |
4
|
eleq2i |
|- ( { B , C } e. E <-> { B , C } e. ran ( iEdg ` G ) ) |
| 13 |
|
fvelrnb |
|- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( { B , C } e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { B , C } ) ) |
| 14 |
8 13
|
syl |
|- ( G e. UHGraph -> ( { B , C } e. ran ( iEdg ` G ) <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { B , C } ) ) |
| 15 |
12 14
|
bitrid |
|- ( G e. UHGraph -> ( { B , C } e. E <-> E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { B , C } ) ) |
| 16 |
11 15
|
anbi12d |
|- ( G e. UHGraph -> ( ( { A , B } e. E /\ { B , C } e. E ) <-> ( E. i e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` i ) = { A , B } /\ E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { B , C } ) ) ) |
| 17 |
16
|
adantr |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) <-> ( E. i e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` i ) = { A , B } /\ E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { B , C } ) ) ) |
| 18 |
17
|
adantr |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) <-> ( E. i e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` i ) = { A , B } /\ E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { B , C } ) ) ) |
| 19 |
|
reeanv |
|- ( E. i e. dom ( iEdg ` G ) E. j e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) <-> ( E. i e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` i ) = { A , B } /\ E. j e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` j ) = { B , C } ) ) |
| 20 |
18 19
|
bitr4di |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) <-> E. i e. dom ( iEdg ` G ) E. j e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) ) |
| 21 |
|
df-s2 |
|- <" i j "> = ( <" i "> ++ <" j "> ) |
| 22 |
21
|
ovexi |
|- <" i j "> e. _V |
| 23 |
|
df-s3 |
|- <" A B C "> = ( <" A B "> ++ <" C "> ) |
| 24 |
23
|
ovexi |
|- <" A B C "> e. _V |
| 25 |
22 24
|
pm3.2i |
|- ( <" i j "> e. _V /\ <" A B C "> e. _V ) |
| 26 |
|
eqid |
|- <" A B C "> = <" A B C "> |
| 27 |
|
eqid |
|- <" i j "> = <" i j "> |
| 28 |
|
simp-4r |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> ( A e. V /\ B e. V /\ C e. V ) ) |
| 29 |
|
3simpb |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( A =/= B /\ B =/= C ) ) |
| 30 |
29
|
ad3antlr |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> ( A =/= B /\ B =/= C ) ) |
| 31 |
|
eqimss2 |
|- ( ( ( iEdg ` G ) ` i ) = { A , B } -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
| 32 |
|
eqimss2 |
|- ( ( ( iEdg ` G ) ` j ) = { B , C } -> { B , C } C_ ( ( iEdg ` G ) ` j ) ) |
| 33 |
31 32
|
anim12i |
|- ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> ( { A , B } C_ ( ( iEdg ` G ) ` i ) /\ { B , C } C_ ( ( iEdg ` G ) ` j ) ) ) |
| 34 |
33
|
adantl |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> ( { A , B } C_ ( ( iEdg ` G ) ` i ) /\ { B , C } C_ ( ( iEdg ` G ) ` j ) ) ) |
| 35 |
|
fveqeq2 |
|- ( i = j -> ( ( ( iEdg ` G ) ` i ) = { A , B } <-> ( ( iEdg ` G ) ` j ) = { A , B } ) ) |
| 36 |
35
|
anbi1d |
|- ( i = j -> ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) <-> ( ( ( iEdg ` G ) ` j ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) ) |
| 37 |
|
eqtr2 |
|- ( ( ( ( iEdg ` G ) ` j ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> { A , B } = { B , C } ) |
| 38 |
|
3simpa |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A e. V /\ B e. V ) ) |
| 39 |
|
3simpc |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( B e. V /\ C e. V ) ) |
| 40 |
|
preq12bg |
|- ( ( ( A e. V /\ B e. V ) /\ ( B e. V /\ C e. V ) ) -> ( { A , B } = { B , C } <-> ( ( A = B /\ B = C ) \/ ( A = C /\ B = B ) ) ) ) |
| 41 |
38 39 40
|
syl2anc |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( { A , B } = { B , C } <-> ( ( A = B /\ B = C ) \/ ( A = C /\ B = B ) ) ) ) |
| 42 |
|
eqneqall |
|- ( A = B -> ( A =/= B -> i =/= j ) ) |
| 43 |
42
|
com12 |
|- ( A =/= B -> ( A = B -> i =/= j ) ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( A = B -> i =/= j ) ) |
| 45 |
44
|
com12 |
|- ( A = B -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> i =/= j ) ) |
| 46 |
45
|
adantr |
|- ( ( A = B /\ B = C ) -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> i =/= j ) ) |
| 47 |
|
eqneqall |
|- ( A = C -> ( A =/= C -> i =/= j ) ) |
| 48 |
47
|
com12 |
|- ( A =/= C -> ( A = C -> i =/= j ) ) |
| 49 |
48
|
3ad2ant2 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( A = C -> i =/= j ) ) |
| 50 |
49
|
com12 |
|- ( A = C -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> i =/= j ) ) |
| 51 |
50
|
adantr |
|- ( ( A = C /\ B = B ) -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> i =/= j ) ) |
| 52 |
46 51
|
jaoi |
|- ( ( ( A = B /\ B = C ) \/ ( A = C /\ B = B ) ) -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> i =/= j ) ) |
| 53 |
41 52
|
biimtrdi |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( { A , B } = { B , C } -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> i =/= j ) ) ) |
| 54 |
53
|
com23 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B } = { B , C } -> i =/= j ) ) ) |
| 55 |
54
|
adantl |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B } = { B , C } -> i =/= j ) ) ) |
| 56 |
55
|
imp |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( { A , B } = { B , C } -> i =/= j ) ) |
| 57 |
56
|
com12 |
|- ( { A , B } = { B , C } -> ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> i =/= j ) ) |
| 58 |
37 57
|
syl |
|- ( ( ( ( iEdg ` G ) ` j ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> i =/= j ) ) |
| 59 |
36 58
|
biimtrdi |
|- ( i = j -> ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> i =/= j ) ) ) |
| 60 |
59
|
com23 |
|- ( i = j -> ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> i =/= j ) ) ) |
| 61 |
|
2a1 |
|- ( i =/= j -> ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> i =/= j ) ) ) |
| 62 |
60 61
|
pm2.61ine |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> i =/= j ) ) |
| 63 |
62
|
adantr |
|- ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) -> ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> i =/= j ) ) |
| 64 |
63
|
imp |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> i =/= j ) |
| 65 |
|
simplr2 |
|- ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) -> A =/= C ) |
| 66 |
65
|
adantr |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> A =/= C ) |
| 67 |
26 27 28 30 34 1 6 64 66
|
2pthond |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> <" i j "> ( A ( SPathsOn ` G ) C ) <" A B C "> ) |
| 68 |
|
s2len |
|- ( # ` <" i j "> ) = 2 |
| 69 |
67 68
|
jctir |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> ( <" i j "> ( A ( SPathsOn ` G ) C ) <" A B C "> /\ ( # ` <" i j "> ) = 2 ) ) |
| 70 |
|
breq12 |
|- ( ( f = <" i j "> /\ p = <" A B C "> ) -> ( f ( A ( SPathsOn ` G ) C ) p <-> <" i j "> ( A ( SPathsOn ` G ) C ) <" A B C "> ) ) |
| 71 |
|
fveqeq2 |
|- ( f = <" i j "> -> ( ( # ` f ) = 2 <-> ( # ` <" i j "> ) = 2 ) ) |
| 72 |
71
|
adantr |
|- ( ( f = <" i j "> /\ p = <" A B C "> ) -> ( ( # ` f ) = 2 <-> ( # ` <" i j "> ) = 2 ) ) |
| 73 |
70 72
|
anbi12d |
|- ( ( f = <" i j "> /\ p = <" A B C "> ) -> ( ( f ( A ( SPathsOn ` G ) C ) p /\ ( # ` f ) = 2 ) <-> ( <" i j "> ( A ( SPathsOn ` G ) C ) <" A B C "> /\ ( # ` <" i j "> ) = 2 ) ) ) |
| 74 |
73
|
spc2egv |
|- ( ( <" i j "> e. _V /\ <" A B C "> e. _V ) -> ( ( <" i j "> ( A ( SPathsOn ` G ) C ) <" A B C "> /\ ( # ` <" i j "> ) = 2 ) -> E. f E. p ( f ( A ( SPathsOn ` G ) C ) p /\ ( # ` f ) = 2 ) ) ) |
| 75 |
25 69 74
|
mpsyl |
|- ( ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) /\ ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) ) -> E. f E. p ( f ( A ( SPathsOn ` G ) C ) p /\ ( # ` f ) = 2 ) ) |
| 76 |
75
|
ex |
|- ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( i e. dom ( iEdg ` G ) /\ j e. dom ( iEdg ` G ) ) ) -> ( ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> E. f E. p ( f ( A ( SPathsOn ` G ) C ) p /\ ( # ` f ) = 2 ) ) ) |
| 77 |
76
|
rexlimdvva |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( E. i e. dom ( iEdg ` G ) E. j e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` i ) = { A , B } /\ ( ( iEdg ` G ) ` j ) = { B , C } ) -> E. f E. p ( f ( A ( SPathsOn ` G ) C ) p /\ ( # ` f ) = 2 ) ) ) |
| 78 |
20 77
|
sylbid |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( { A , B } e. E /\ { B , C } e. E ) -> E. f E. p ( f ( A ( SPathsOn ` G ) C ) p /\ ( # ` f ) = 2 ) ) ) |
| 79 |
78
|
3impia |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) /\ ( { A , B } e. E /\ { B , C } e. E ) ) -> E. f E. p ( f ( A ( SPathsOn ` G ) C ) p /\ ( # ` f ) = 2 ) ) |