Metamath Proof Explorer


Theorem 2pthdlem1

Description: Lemma 1 for 2pthd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
Assertion 2pthdlem1 φk0..^Pj1..^FkjPkPj

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 1 2 3 2wlkdlem3 φP0=AP1=BP2=C
6 simpl P0=AP1=BP0=A
7 simpr P0=AP1=BP1=B
8 6 7 neeq12d P0=AP1=BP0P1AB
9 8 bicomd P0=AP1=BABP0P1
10 9 3adant3 P0=AP1=BP2=CABP0P1
11 10 biimpcd ABP0=AP1=BP2=CP0P1
12 11 adantr ABBCP0=AP1=BP2=CP0P1
13 12 imp ABBCP0=AP1=BP2=CP0P1
14 13 a1d ABBCP0=AP1=BP2=C01P0P1
15 eqid 1=1
16 eqneqall 1=111P1P1
17 15 16 mp1i ABBCP0=AP1=BP2=C11P1P1
18 simpr P1=BP2=CP2=C
19 simpl P1=BP2=CP1=B
20 18 19 neeq12d P1=BP2=CP2P1CB
21 necom CBBC
22 20 21 bitr2di P1=BP2=CBCP2P1
23 22 3adant1 P0=AP1=BP2=CBCP2P1
24 23 biimpcd BCP0=AP1=BP2=CP2P1
25 24 adantl ABBCP0=AP1=BP2=CP2P1
26 25 imp ABBCP0=AP1=BP2=CP2P1
27 26 a1d ABBCP0=AP1=BP2=C21P2P1
28 14 17 27 3jca ABBCP0=AP1=BP2=C01P0P111P1P121P2P1
29 4 5 28 syl2anc φ01P0P111P1P121P2P1
30 1 fveq2i P=⟨“ABC”⟩
31 s3len ⟨“ABC”⟩=3
32 30 31 eqtri P=3
33 32 oveq2i 0..^P=0..^3
34 fzo0to3tp 0..^3=012
35 33 34 eqtri 0..^P=012
36 35 raleqi k0..^Pk1PkP1k012k1PkP1
37 c0ex 0V
38 1ex 1V
39 2ex 2V
40 neeq1 k=0k101
41 fveq2 k=0Pk=P0
42 41 neeq1d k=0PkP1P0P1
43 40 42 imbi12d k=0k1PkP101P0P1
44 neeq1 k=1k111
45 fveq2 k=1Pk=P1
46 45 neeq1d k=1PkP1P1P1
47 44 46 imbi12d k=1k1PkP111P1P1
48 neeq1 k=2k121
49 fveq2 k=2Pk=P2
50 49 neeq1d k=2PkP1P2P1
51 48 50 imbi12d k=2k1PkP121P2P1
52 37 38 39 43 47 51 raltp k012k1PkP101P0P111P1P121P2P1
53 36 52 bitri k0..^Pk1PkP101P0P111P1P121P2P1
54 29 53 sylibr φk0..^Pk1PkP1
55 2 fveq2i F=⟨“JK”⟩
56 s2len ⟨“JK”⟩=2
57 55 56 eqtri F=2
58 57 oveq2i 1..^F=1..^2
59 fzo12sn 1..^2=1
60 58 59 eqtri 1..^F=1
61 60 raleqi j1..^FkjPkPjj1kjPkPj
62 neeq2 j=1kjk1
63 fveq2 j=1Pj=P1
64 63 neeq2d j=1PkPjPkP1
65 62 64 imbi12d j=1kjPkPjk1PkP1
66 38 65 ralsn j1kjPkPjk1PkP1
67 61 66 bitri j1..^FkjPkPjk1PkP1
68 67 ralbii k0..^Pj1..^FkjPkPjk0..^Pk1PkP1
69 54 68 sylibr φk0..^Pj1..^FkjPkPj