Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
|
2 |
|
2wlkd.f |
|
3 |
|
2wlkd.s |
|
4 |
|
2wlkd.n |
|
5 |
1 2 3
|
2wlkdlem3 |
|
6 |
|
simpl |
|
7 |
|
simpr |
|
8 |
6 7
|
neeq12d |
|
9 |
8
|
bicomd |
|
10 |
9
|
3adant3 |
|
11 |
10
|
biimpcd |
|
12 |
11
|
adantr |
|
13 |
12
|
imp |
|
14 |
13
|
a1d |
|
15 |
|
eqid |
|
16 |
|
eqneqall |
|
17 |
15 16
|
mp1i |
|
18 |
|
simpr |
|
19 |
|
simpl |
|
20 |
18 19
|
neeq12d |
|
21 |
|
necom |
|
22 |
20 21
|
bitr2di |
|
23 |
22
|
3adant1 |
|
24 |
23
|
biimpcd |
|
25 |
24
|
adantl |
|
26 |
25
|
imp |
|
27 |
26
|
a1d |
|
28 |
14 17 27
|
3jca |
|
29 |
4 5 28
|
syl2anc |
|
30 |
1
|
fveq2i |
|
31 |
|
s3len |
|
32 |
30 31
|
eqtri |
|
33 |
32
|
oveq2i |
|
34 |
|
fzo0to3tp |
|
35 |
33 34
|
eqtri |
|
36 |
35
|
raleqi |
|
37 |
|
c0ex |
|
38 |
|
1ex |
|
39 |
|
2ex |
|
40 |
|
neeq1 |
|
41 |
|
fveq2 |
|
42 |
41
|
neeq1d |
|
43 |
40 42
|
imbi12d |
|
44 |
|
neeq1 |
|
45 |
|
fveq2 |
|
46 |
45
|
neeq1d |
|
47 |
44 46
|
imbi12d |
|
48 |
|
neeq1 |
|
49 |
|
fveq2 |
|
50 |
49
|
neeq1d |
|
51 |
48 50
|
imbi12d |
|
52 |
37 38 39 43 47 51
|
raltp |
|
53 |
36 52
|
bitri |
|
54 |
29 53
|
sylibr |
|
55 |
2
|
fveq2i |
|
56 |
|
s2len |
|
57 |
55 56
|
eqtri |
|
58 |
57
|
oveq2i |
|
59 |
|
fzo12sn |
|
60 |
58 59
|
eqtri |
|
61 |
60
|
raleqi |
|
62 |
|
neeq2 |
|
63 |
|
fveq2 |
|
64 |
63
|
neeq2d |
|
65 |
62 64
|
imbi12d |
|
66 |
38 65
|
ralsn |
|
67 |
61 66
|
bitri |
|
68 |
67
|
ralbii |
|
69 |
54 68
|
sylibr |
|