Description: A loop (which is an edge at index J ) induces a cycle of length 1 in a hypergraph. (Contributed by AV, 2-Feb-2021) (Proof shortened by AV, 30-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lppthon.i | |
|
Assertion | lp1cycl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lppthon.i | |
|
2 | 1 | lppthon | |
3 | pthonispth | |
|
4 | 2 3 | syl | |
5 | 1 | lpvtx | |
6 | s2fv1 | |
|
7 | s1len | |
|
8 | 7 | fveq2i | |
9 | 8 | a1i | |
10 | s2fv0 | |
|
11 | 6 9 10 | 3eqtr4rd | |
12 | 5 11 | syl | |
13 | iscycl | |
|
14 | 4 12 13 | sylanbrc | |