Metamath Proof Explorer


Theorem lp1cycl

Description: A loop (which is an edge at index J ) induces a cycle of length 1 in a hypergraph. (Contributed by AV, 2-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis lppthon.i I=iEdgG
Assertion lp1cycl GUHGraphJdomIIJ=A⟨“J”⟩CyclesG⟨“AA”⟩

Proof

Step Hyp Ref Expression
1 lppthon.i I=iEdgG
2 1 lppthon GUHGraphJdomIIJ=A⟨“J”⟩APathsOnGA⟨“AA”⟩
3 pthonispth ⟨“J”⟩APathsOnGA⟨“AA”⟩⟨“J”⟩PathsG⟨“AA”⟩
4 2 3 syl GUHGraphJdomIIJ=A⟨“J”⟩PathsG⟨“AA”⟩
5 1 lpvtx GUHGraphJdomIIJ=AAVtxG
6 s2fv1 AVtxG⟨“AA”⟩1=A
7 s1len ⟨“J”⟩=1
8 7 fveq2i ⟨“AA”⟩⟨“J”⟩=⟨“AA”⟩1
9 8 a1i AVtxG⟨“AA”⟩⟨“J”⟩=⟨“AA”⟩1
10 s2fv0 AVtxG⟨“AA”⟩0=A
11 6 9 10 3eqtr4rd AVtxG⟨“AA”⟩0=⟨“AA”⟩⟨“J”⟩
12 5 11 syl GUHGraphJdomIIJ=A⟨“AA”⟩0=⟨“AA”⟩⟨“J”⟩
13 iscycl ⟨“J”⟩CyclesG⟨“AA”⟩⟨“J”⟩PathsG⟨“AA”⟩⟨“AA”⟩0=⟨“AA”⟩⟨“J”⟩
14 4 12 13 sylanbrc GUHGraphJdomIIJ=A⟨“J”⟩CyclesG⟨“AA”⟩