Metamath Proof Explorer


Theorem lpvtx

Description: The endpoints of a loop (which is an edge at index J ) are two (identical) vertices A . (Contributed by AV, 1-Feb-2021)

Ref Expression
Hypothesis lpvtx.i I=iEdgG
Assertion lpvtx GUHGraphJdomIIJ=AAVtxG

Proof

Step Hyp Ref Expression
1 lpvtx.i I=iEdgG
2 simp1 GUHGraphJdomIIJ=AGUHGraph
3 1 uhgrfun GUHGraphFunI
4 3 funfnd GUHGraphIFndomI
5 4 3ad2ant1 GUHGraphJdomIIJ=AIFndomI
6 simp2 GUHGraphJdomIIJ=AJdomI
7 1 uhgrn0 GUHGraphIFndomIJdomIIJ
8 2 5 6 7 syl3anc GUHGraphJdomIIJ=AIJ
9 neeq1 IJ=AIJA
10 9 biimpd IJ=AIJA
11 10 3ad2ant3 GUHGraphJdomIIJ=AIJA
12 8 11 mpd GUHGraphJdomIIJ=AA
13 eqid VtxG=VtxG
14 13 1 uhgrss GUHGraphJdomIIJVtxG
15 14 3adant3 GUHGraphJdomIIJ=AIJVtxG
16 sseq1 IJ=AIJVtxGAVtxG
17 16 3ad2ant3 GUHGraphJdomIIJ=AIJVtxGAVtxG
18 15 17 mpbid GUHGraphJdomIIJ=AAVtxG
19 snnzb AVA
20 snssg AVAVtxGAVtxG
21 19 20 sylbir AAVtxGAVtxG
22 18 21 syl5ibrcom GUHGraphJdomIIJ=AAAVtxG
23 12 22 mpd GUHGraphJdomIIJ=AAVtxG