| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpvtx.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐺 ∈ UHGraph ) |
| 3 |
1
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 4 |
3
|
funfnd |
⊢ ( 𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼 ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐼 Fn dom 𝐼 ) |
| 6 |
|
simp2 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐽 ∈ dom 𝐼 ) |
| 7 |
1
|
uhgrn0 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼 ∧ 𝐽 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝐽 ) ≠ ∅ ) |
| 8 |
2 5 6 7
|
syl3anc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( 𝐼 ‘ 𝐽 ) ≠ ∅ ) |
| 9 |
|
neeq1 |
⊢ ( ( 𝐼 ‘ 𝐽 ) = { 𝐴 } → ( ( 𝐼 ‘ 𝐽 ) ≠ ∅ ↔ { 𝐴 } ≠ ∅ ) ) |
| 10 |
9
|
biimpd |
⊢ ( ( 𝐼 ‘ 𝐽 ) = { 𝐴 } → ( ( 𝐼 ‘ 𝐽 ) ≠ ∅ → { 𝐴 } ≠ ∅ ) ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( ( 𝐼 ‘ 𝐽 ) ≠ ∅ → { 𝐴 } ≠ ∅ ) ) |
| 12 |
8 11
|
mpd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → { 𝐴 } ≠ ∅ ) |
| 13 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 14 |
13 1
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
| 16 |
|
sseq1 |
⊢ ( ( 𝐼 ‘ 𝐽 ) = { 𝐴 } → ( ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 17 |
16
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( ( 𝐼 ‘ 𝐽 ) ⊆ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 18 |
15 17
|
mpbid |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 19 |
|
snnzb |
⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ ) |
| 20 |
|
snssg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 21 |
19 20
|
sylbir |
⊢ ( { 𝐴 } ≠ ∅ → ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ↔ { 𝐴 } ⊆ ( Vtx ‘ 𝐺 ) ) ) |
| 22 |
18 21
|
syl5ibrcom |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → ( { 𝐴 } ≠ ∅ → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 23 |
12 22
|
mpd |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ ( 𝐼 ‘ 𝐽 ) = { 𝐴 } ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |