| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpvtx.i |
|- I = ( iEdg ` G ) |
| 2 |
|
simp1 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> G e. UHGraph ) |
| 3 |
1
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
| 4 |
3
|
funfnd |
|- ( G e. UHGraph -> I Fn dom I ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> I Fn dom I ) |
| 6 |
|
simp2 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> J e. dom I ) |
| 7 |
1
|
uhgrn0 |
|- ( ( G e. UHGraph /\ I Fn dom I /\ J e. dom I ) -> ( I ` J ) =/= (/) ) |
| 8 |
2 5 6 7
|
syl3anc |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( I ` J ) =/= (/) ) |
| 9 |
|
neeq1 |
|- ( ( I ` J ) = { A } -> ( ( I ` J ) =/= (/) <-> { A } =/= (/) ) ) |
| 10 |
9
|
biimpd |
|- ( ( I ` J ) = { A } -> ( ( I ` J ) =/= (/) -> { A } =/= (/) ) ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( ( I ` J ) =/= (/) -> { A } =/= (/) ) ) |
| 12 |
8 11
|
mpd |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> { A } =/= (/) ) |
| 13 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 14 |
13 1
|
uhgrss |
|- ( ( G e. UHGraph /\ J e. dom I ) -> ( I ` J ) C_ ( Vtx ` G ) ) |
| 15 |
14
|
3adant3 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( I ` J ) C_ ( Vtx ` G ) ) |
| 16 |
|
sseq1 |
|- ( ( I ` J ) = { A } -> ( ( I ` J ) C_ ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
| 17 |
16
|
3ad2ant3 |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( ( I ` J ) C_ ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
| 18 |
15 17
|
mpbid |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> { A } C_ ( Vtx ` G ) ) |
| 19 |
|
snnzb |
|- ( A e. _V <-> { A } =/= (/) ) |
| 20 |
|
snssg |
|- ( A e. _V -> ( A e. ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
| 21 |
19 20
|
sylbir |
|- ( { A } =/= (/) -> ( A e. ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
| 22 |
18 21
|
syl5ibrcom |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( { A } =/= (/) -> A e. ( Vtx ` G ) ) ) |
| 23 |
12 22
|
mpd |
|- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> A e. ( Vtx ` G ) ) |