| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1pthon2v.v |
|
| 2 |
|
1pthon2v.e |
|
| 3 |
|
simpl |
|
| 4 |
3
|
anim2i |
|
| 5 |
4
|
3adant3 |
|
| 6 |
5
|
adantl |
|
| 7 |
1
|
0pthonv |
|
| 8 |
6 7
|
simpl2im |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
eqcoms |
|
| 11 |
10
|
breqd |
|
| 12 |
11
|
2exbidv |
|
| 13 |
12
|
adantr |
|
| 14 |
8 13
|
mpbird |
|
| 15 |
14
|
ex |
|
| 16 |
2
|
eleq2i |
|
| 17 |
|
eqid |
|
| 18 |
17
|
uhgredgiedgb |
|
| 19 |
16 18
|
bitrid |
|
| 20 |
19
|
3ad2ant1 |
|
| 21 |
|
s1cli |
|
| 22 |
|
s2cli |
|
| 23 |
21 22
|
pm3.2i |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
simpl2l |
|
| 27 |
|
simpl2r |
|
| 28 |
|
eqneqall |
|
| 29 |
28
|
com12 |
|
| 30 |
29
|
3ad2ant3 |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
imp |
|
| 33 |
|
sseq2 |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
biimpa |
|
| 36 |
35
|
adantl |
|
| 37 |
36
|
adantr |
|
| 38 |
24 25 26 27 32 37 1 17
|
1pthond |
|
| 39 |
|
breq12 |
|
| 40 |
39
|
spc2egv |
|
| 41 |
23 38 40
|
mpsyl |
|
| 42 |
41
|
exp44 |
|
| 43 |
42
|
rexlimdv |
|
| 44 |
20 43
|
sylbid |
|
| 45 |
44
|
rexlimdv |
|
| 46 |
45
|
3exp |
|
| 47 |
46
|
com34 |
|
| 48 |
47
|
3imp |
|
| 49 |
48
|
com12 |
|
| 50 |
15 49
|
pm2.61ine |
|