Step |
Hyp |
Ref |
Expression |
1 |
|
cyclprop |
⊢ ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) ) |
2 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝑓 ) = 1 → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = ( 𝑝 ‘ 1 ) ) |
3 |
2
|
eqeq2d |
⊢ ( ( ♯ ‘ 𝑓 ) = 1 → ( ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ↔ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) |
4 |
3
|
anbi2d |
⊢ ( ( ♯ ‘ 𝑓 ) = 1 → ( ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) ↔ ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) ) |
5 |
4
|
biimpd |
⊢ ( ( ♯ ‘ 𝑓 ) = 1 → ( ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) ) |
6 |
1 5
|
mpan9 |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) |
7 |
|
pthiswlk |
⊢ ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 → 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) |
8 |
7
|
anim1i |
⊢ ( ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) |
9 |
6 8
|
syl |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) |
10 |
9
|
anim1i |
⊢ ( ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ) |
11 |
10
|
anabss3 |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ) |
12 |
|
df-3an |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ↔ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ) |
14 |
|
3ancomb |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) |
15 |
13 14
|
sylib |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) |
16 |
|
wlkl1loop |
⊢ ( ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ∧ ( ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
17 |
16
|
expl |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
18 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
19 |
18
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
20 |
17 19
|
syl11 |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
21 |
20
|
3impb |
⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
22 |
15 21
|
syl |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
24 |
|
sneq |
⊢ ( ( 𝑝 ‘ 0 ) = 𝐴 → { ( 𝑝 ‘ 0 ) } = { 𝐴 } ) |
25 |
24
|
eleq1d |
⊢ ( ( 𝑝 ‘ 0 ) = 𝐴 → ( { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) ) |
27 |
23 26
|
sylibd |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( 𝐺 ∈ UHGraph → { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) ) |
28 |
27
|
exlimivv |
⊢ ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( 𝐺 ∈ UHGraph → { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) ) |
29 |
28
|
com12 |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) ) |
30 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
31 |
30
|
eleq2i |
⊢ ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 } ∈ ran ( iEdg ‘ 𝐺 ) ) |
32 |
|
elrnrexdm |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( { 𝐴 } ∈ ran ( iEdg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
33 |
|
eqcom |
⊢ ( { 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) |
34 |
33
|
rexbii |
⊢ ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) |
35 |
32 34
|
syl6ib |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( { 𝐴 } ∈ ran ( iEdg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) ) |
36 |
31 35
|
syl5bi |
⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) ) |
37 |
19 36
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) ) |
38 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ↔ ∃ 𝑗 ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) ) |
39 |
37 38
|
syl6ib |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) ) ) |
40 |
18
|
lp1cycl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) → 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ) |
41 |
40
|
3expib |
⊢ ( 𝐺 ∈ UHGraph → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) → 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ) ) |
42 |
41
|
eximdv |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑗 ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) → ∃ 𝑗 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ) ) |
43 |
39 42
|
syld |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ) ) |
44 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 |
45 |
44
|
ax-gen |
⊢ ∀ 𝑗 ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 |
46 |
|
19.29r |
⊢ ( ( ∃ 𝑗 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ∀ 𝑗 ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) → ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ) |
47 |
45 46
|
mpan2 |
⊢ ( ∃ 𝑗 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 → ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ) |
48 |
43 47
|
syl6 |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ) ) |
49 |
48
|
imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ) |
50 |
|
uhgredgn0 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐴 } ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
51 |
|
eldifsni |
⊢ ( { 𝐴 } ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → { 𝐴 } ≠ ∅ ) |
52 |
50 51
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐴 } ≠ ∅ ) |
53 |
|
snnzb |
⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ ) |
54 |
52 53
|
sylibr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → 𝐴 ∈ V ) |
55 |
|
s2fv0 |
⊢ ( 𝐴 ∈ V → ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) |
56 |
54 55
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) |
57 |
56
|
alrimiv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∀ 𝑗 ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) |
58 |
|
19.29r |
⊢ ( ( ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ∧ ∀ 𝑗 ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑗 ( ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
59 |
49 57 58
|
syl2anc |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ( ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
60 |
|
df-3an |
⊢ ( ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ↔ ( ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
61 |
60
|
exbii |
⊢ ( ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ↔ ∃ 𝑗 ( ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
62 |
59 61
|
sylibr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
63 |
|
s1cli |
⊢ 〈“ 𝑗 ”〉 ∈ Word V |
64 |
|
breq1 |
⊢ ( 𝑓 = 〈“ 𝑗 ”〉 → ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ↔ 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ) ) |
65 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ 𝑗 ”〉 → ( ( ♯ ‘ 𝑓 ) = 1 ↔ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ) ) |
66 |
64 65
|
3anbi12d |
⊢ ( 𝑓 = 〈“ 𝑗 ”〉 → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ↔ ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) ) |
67 |
66
|
rspcev |
⊢ ( ( 〈“ 𝑗 ”〉 ∈ Word V ∧ ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) → ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
68 |
63 67
|
mpan |
⊢ ( ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
69 |
|
rexex |
⊢ ( ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
70 |
68 69
|
syl |
⊢ ( ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
71 |
70
|
exlimiv |
⊢ ( ∃ 𝑗 ( 〈“ 𝑗 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑗 ”〉 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
72 |
62 71
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
73 |
|
s2cli |
⊢ 〈“ 𝐴 𝐴 ”〉 ∈ Word V |
74 |
|
breq2 |
⊢ ( 𝑝 = 〈“ 𝐴 𝐴 ”〉 → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ↔ 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ) ) |
75 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝐴 𝐴 ”〉 → ( 𝑝 ‘ 0 ) = ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) ) |
76 |
75
|
eqeq1d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐴 ”〉 → ( ( 𝑝 ‘ 0 ) = 𝐴 ↔ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
77 |
74 76
|
3anbi13d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐴 ”〉 → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ↔ ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) ) |
78 |
77
|
rspcev |
⊢ ( ( 〈“ 𝐴 𝐴 ”〉 ∈ Word V ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) → ∃ 𝑝 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
79 |
73 78
|
mpan |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑝 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
80 |
|
rexex |
⊢ ( ∃ 𝑝 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
81 |
79 80
|
syl |
⊢ ( ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
82 |
81
|
eximi |
⊢ ( ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐴 ”〉 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 〈“ 𝐴 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
83 |
72 82
|
syl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
84 |
83
|
ex |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
85 |
29 84
|
impbid |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ↔ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) ) |