Metamath Proof Explorer


Theorem loop1cycl

Description: A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023)

Ref Expression
Assertion loop1cycl ( 𝐺 ∈ UHGraph → ( ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ↔ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 cyclprop ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) )
2 fveq2 ( ( ♯ ‘ 𝑓 ) = 1 → ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = ( 𝑝 ‘ 1 ) )
3 2 eqeq2d ( ( ♯ ‘ 𝑓 ) = 1 → ( ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ↔ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) )
4 3 anbi2d ( ( ♯ ‘ 𝑓 ) = 1 → ( ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) ↔ ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) )
5 4 biimpd ( ( ♯ ‘ 𝑓 ) = 1 → ( ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) )
6 1 5 mpan9 ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) )
7 pthiswlk ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝𝑓 ( Walks ‘ 𝐺 ) 𝑝 )
8 7 anim1i ( ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) )
9 6 8 syl ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) )
10 9 anim1i ( ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) )
11 10 anabss3 ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) )
12 df-3an ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ↔ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) )
13 11 12 sylibr ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) )
14 3ancomb ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ∧ ( ♯ ‘ 𝑓 ) = 1 ) ↔ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) )
15 13 14 sylib ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) )
16 wlkl1loop ( ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ∧ ( ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) )
17 16 expl ( Fun ( iEdg ‘ 𝐺 ) → ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) )
18 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
19 18 uhgrfun ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) )
20 17 19 syl11 ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) )
21 20 3impb ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = ( 𝑝 ‘ 1 ) ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) )
22 15 21 syl ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) )
23 22 3adant3 ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( 𝐺 ∈ UHGraph → { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) )
24 sneq ( ( 𝑝 ‘ 0 ) = 𝐴 → { ( 𝑝 ‘ 0 ) } = { 𝐴 } )
25 24 eleq1d ( ( 𝑝 ‘ 0 ) = 𝐴 → ( { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) )
26 25 3ad2ant3 ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( { ( 𝑝 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) )
27 23 26 sylibd ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( 𝐺 ∈ UHGraph → { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) )
28 27 exlimivv ( ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ( 𝐺 ∈ UHGraph → { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) )
29 28 com12 ( 𝐺 ∈ UHGraph → ( ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) )
30 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
31 30 eleq2i ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 } ∈ ran ( iEdg ‘ 𝐺 ) )
32 elrnrexdm ( Fun ( iEdg ‘ 𝐺 ) → ( { 𝐴 } ∈ ran ( iEdg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) )
33 eqcom ( { 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } )
34 33 rexbii ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } )
35 32 34 syl6ib ( Fun ( iEdg ‘ 𝐺 ) → ( { 𝐴 } ∈ ran ( iEdg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) )
36 31 35 syl5bi ( Fun ( iEdg ‘ 𝐺 ) → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) )
37 19 36 syl ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) )
38 df-rex ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ↔ ∃ 𝑗 ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) )
39 37 38 syl6ib ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) ) )
40 18 lp1cycl ( ( 𝐺 ∈ UHGraph ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) → ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ )
41 40 3expib ( 𝐺 ∈ UHGraph → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) → ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ) )
42 41 eximdv ( 𝐺 ∈ UHGraph → ( ∃ 𝑗 ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 } ) → ∃ 𝑗 ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ) )
43 39 42 syld ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ) )
44 s1len ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1
45 44 ax-gen 𝑗 ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1
46 19.29r ( ( ∃ 𝑗 ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ∀ 𝑗 ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) → ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) )
47 45 46 mpan2 ( ∃ 𝑗 ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ → ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) )
48 43 47 syl6 ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) ) )
49 48 imp ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) )
50 uhgredgn0 ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐴 } ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) )
51 eldifsni ( { 𝐴 } ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → { 𝐴 } ≠ ∅ )
52 50 51 syl ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐴 } ≠ ∅ )
53 snnzb ( 𝐴 ∈ V ↔ { 𝐴 } ≠ ∅ )
54 52 53 sylibr ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → 𝐴 ∈ V )
55 s2fv0 ( 𝐴 ∈ V → ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 )
56 54 55 syl ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 )
57 56 alrimiv ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∀ 𝑗 ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 )
58 19.29r ( ( ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) ∧ ∀ 𝑗 ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑗 ( ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
59 49 57 58 syl2anc ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ( ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
60 df-3an ( ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) ↔ ( ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
61 60 exbii ( ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) ↔ ∃ 𝑗 ( ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
62 59 61 sylibr ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
63 s1cli ⟨“ 𝑗 ”⟩ ∈ Word V
64 breq1 ( 𝑓 = ⟨“ 𝑗 ”⟩ → ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ↔ ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ) )
65 fveqeq2 ( 𝑓 = ⟨“ 𝑗 ”⟩ → ( ( ♯ ‘ 𝑓 ) = 1 ↔ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ) )
66 64 65 3anbi12d ( 𝑓 = ⟨“ 𝑗 ”⟩ → ( ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) ↔ ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) ) )
67 66 rspcev ( ( ⟨“ 𝑗 ”⟩ ∈ Word V ∧ ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) ) → ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
68 63 67 mpan ( ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
69 rexex ( ∃ 𝑓 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
70 68 69 syl ( ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
71 70 exlimiv ( ∃ 𝑗 ( ⟨“ 𝑗 ”⟩ ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑗 ”⟩ ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
72 62 71 syl ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
73 s2cli ⟨“ 𝐴 𝐴 ”⟩ ∈ Word V
74 breq2 ( 𝑝 = ⟨“ 𝐴 𝐴 ”⟩ → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ) )
75 fveq1 ( 𝑝 = ⟨“ 𝐴 𝐴 ”⟩ → ( 𝑝 ‘ 0 ) = ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) )
76 75 eqeq1d ( 𝑝 = ⟨“ 𝐴 𝐴 ”⟩ → ( ( 𝑝 ‘ 0 ) = 𝐴 ↔ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) )
77 74 76 3anbi13d ( 𝑝 = ⟨“ 𝐴 𝐴 ”⟩ → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ↔ ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) ) )
78 77 rspcev ( ( ⟨“ 𝐴 𝐴 ”⟩ ∈ Word V ∧ ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) ) → ∃ 𝑝 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )
79 73 78 mpan ( ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑝 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )
80 rexex ( ∃ 𝑝 ∈ Word V ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) → ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )
81 79 80 syl ( ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )
82 81 eximi ( ∃ 𝑓 ( 𝑓 ( Cycles ‘ 𝐺 ) ⟨“ 𝐴 𝐴 ”⟩ ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( ⟨“ 𝐴 𝐴 ”⟩ ‘ 0 ) = 𝐴 ) → ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )
83 72 82 syl ( ( 𝐺 ∈ UHGraph ∧ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) )
84 83 ex ( 𝐺 ∈ UHGraph → ( { 𝐴 } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) )
85 29 84 impbid ( 𝐺 ∈ UHGraph → ( ∃ 𝑓𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 1 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ↔ { 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) )