Metamath Proof Explorer


Theorem wlkl1loop

Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021)

Ref Expression
Assertion wlkl1loop FuniEdgGFWalksGPF=1P0=P1P0EdgG

Proof

Step Hyp Ref Expression
1 wlkv FWalksGPGVFVPV
2 simp3l GVFWalksGPFuniEdgGF=1P0=P1FuniEdgG
3 simp2 GVFWalksGPFuniEdgGF=1P0=P1FWalksGP
4 c0ex 0V
5 4 snid 00
6 oveq2 F=10..^F=0..^1
7 fzo01 0..^1=0
8 6 7 eqtrdi F=10..^F=0
9 5 8 eleqtrrid F=100..^F
10 9 ad2antrl FuniEdgGF=1P0=P100..^F
11 10 3ad2ant3 GVFWalksGPFuniEdgGF=1P0=P100..^F
12 eqid iEdgG=iEdgG
13 12 iedginwlk FuniEdgGFWalksGP00..^FiEdgGF0raniEdgG
14 2 3 11 13 syl3anc GVFWalksGPFuniEdgGF=1P0=P1iEdgGF0raniEdgG
15 eqid VtxG=VtxG
16 15 12 iswlkg GVFWalksGPFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
17 8 raleqdv F=1k0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkk0if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
18 oveq1 k=0k+1=0+1
19 0p1e1 0+1=1
20 18 19 eqtrdi k=0k+1=1
21 wkslem2 k=0k+1=1if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkif-P0=P1iEdgGF0=P0P0P1iEdgGF0
22 20 21 mpdan k=0if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkif-P0=P1iEdgGF0=P0P0P1iEdgGF0
23 4 22 ralsn k0if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkif-P0=P1iEdgGF0=P0P0P1iEdgGF0
24 17 23 bitrdi F=1k0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkif-P0=P1iEdgGF0=P0P0P1iEdgGF0
25 24 ad2antrl FuniEdgGF=1P0=P1k0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkif-P0=P1iEdgGF0=P0P0P1iEdgGF0
26 ifptru P0=P1if-P0=P1iEdgGF0=P0P0P1iEdgGF0iEdgGF0=P0
27 26 biimpa P0=P1if-P0=P1iEdgGF0=P0P0P1iEdgGF0iEdgGF0=P0
28 27 eqcomd P0=P1if-P0=P1iEdgGF0=P0P0P1iEdgGF0P0=iEdgGF0
29 28 ex P0=P1if-P0=P1iEdgGF0=P0P0P1iEdgGF0P0=iEdgGF0
30 29 ad2antll FuniEdgGF=1P0=P1if-P0=P1iEdgGF0=P0P0P1iEdgGF0P0=iEdgGF0
31 25 30 sylbid FuniEdgGF=1P0=P1k0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkP0=iEdgGF0
32 31 com12 k0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkFuniEdgGF=1P0=P1P0=iEdgGF0
33 32 3ad2ant3 FWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkFuniEdgGF=1P0=P1P0=iEdgGF0
34 16 33 syl6bi GVFWalksGPFuniEdgGF=1P0=P1P0=iEdgGF0
35 34 3imp GVFWalksGPFuniEdgGF=1P0=P1P0=iEdgGF0
36 edgval EdgG=raniEdgG
37 36 a1i GVFWalksGPFuniEdgGF=1P0=P1EdgG=raniEdgG
38 14 35 37 3eltr4d GVFWalksGPFuniEdgGF=1P0=P1P0EdgG
39 38 3exp GVFWalksGPFuniEdgGF=1P0=P1P0EdgG
40 39 3ad2ant1 GVFVPVFWalksGPFuniEdgGF=1P0=P1P0EdgG
41 1 40 mpcom FWalksGPFuniEdgGF=1P0=P1P0EdgG
42 41 expd FWalksGPFuniEdgGF=1P0=P1P0EdgG
43 42 impcom FuniEdgGFWalksGPF=1P0=P1P0EdgG
44 43 imp FuniEdgGFWalksGPF=1P0=P1P0EdgG