Step |
Hyp |
Ref |
Expression |
1 |
|
wlkv |
|
2 |
|
simp3l |
|
3 |
|
simp2 |
|
4 |
|
c0ex |
|
5 |
4
|
snid |
|
6 |
|
oveq2 |
|
7 |
|
fzo01 |
|
8 |
6 7
|
eqtrdi |
|
9 |
5 8
|
eleqtrrid |
|
10 |
9
|
ad2antrl |
|
11 |
10
|
3ad2ant3 |
|
12 |
|
eqid |
|
13 |
12
|
iedginwlk |
|
14 |
2 3 11 13
|
syl3anc |
|
15 |
|
eqid |
|
16 |
15 12
|
iswlkg |
|
17 |
8
|
raleqdv |
|
18 |
|
oveq1 |
|
19 |
|
0p1e1 |
|
20 |
18 19
|
eqtrdi |
|
21 |
|
wkslem2 |
|
22 |
20 21
|
mpdan |
|
23 |
4 22
|
ralsn |
|
24 |
17 23
|
bitrdi |
|
25 |
24
|
ad2antrl |
|
26 |
|
ifptru |
|
27 |
26
|
biimpa |
|
28 |
27
|
eqcomd |
|
29 |
28
|
ex |
|
30 |
29
|
ad2antll |
|
31 |
25 30
|
sylbid |
|
32 |
31
|
com12 |
|
33 |
32
|
3ad2ant3 |
|
34 |
16 33
|
syl6bi |
|
35 |
34
|
3imp |
|
36 |
|
edgval |
|
37 |
36
|
a1i |
|
38 |
14 35 37
|
3eltr4d |
|
39 |
38
|
3exp |
|
40 |
39
|
3ad2ant1 |
|
41 |
1 40
|
mpcom |
|
42 |
41
|
expd |
|
43 |
42
|
impcom |
|
44 |
43
|
imp |
|