| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkv |
|
| 2 |
|
simp3l |
|
| 3 |
|
simp2 |
|
| 4 |
|
c0ex |
|
| 5 |
4
|
snid |
|
| 6 |
|
oveq2 |
|
| 7 |
|
fzo01 |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
5 8
|
eleqtrrid |
|
| 10 |
9
|
ad2antrl |
|
| 11 |
10
|
3ad2ant3 |
|
| 12 |
|
eqid |
|
| 13 |
12
|
iedginwlk |
|
| 14 |
2 3 11 13
|
syl3anc |
|
| 15 |
|
eqid |
|
| 16 |
15 12
|
iswlkg |
|
| 17 |
8
|
raleqdv |
|
| 18 |
|
oveq1 |
|
| 19 |
|
0p1e1 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
|
wkslem2 |
|
| 22 |
20 21
|
mpdan |
|
| 23 |
4 22
|
ralsn |
|
| 24 |
17 23
|
bitrdi |
|
| 25 |
24
|
ad2antrl |
|
| 26 |
|
ifptru |
|
| 27 |
26
|
biimpa |
|
| 28 |
27
|
eqcomd |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
ad2antll |
|
| 31 |
25 30
|
sylbid |
|
| 32 |
31
|
com12 |
|
| 33 |
32
|
3ad2ant3 |
|
| 34 |
16 33
|
biimtrdi |
|
| 35 |
34
|
3imp |
|
| 36 |
|
edgval |
|
| 37 |
36
|
a1i |
|
| 38 |
14 35 37
|
3eltr4d |
|
| 39 |
38
|
3exp |
|
| 40 |
39
|
3ad2ant1 |
|
| 41 |
1 40
|
mpcom |
|
| 42 |
41
|
expd |
|
| 43 |
42
|
impcom |
|
| 44 |
43
|
imp |
|